∫ − ∞ ∞ ∫ − ∞ ∞ e − ( x 2 + x y + y 2 ) d y d x
Evaluate the above integral. The answer will come in the form of b c a π where a , b , c are positive integers and c can not be reduced again.
Submit the answer as a + b + c
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Great ....
Use polar coordinates, x = r cos θ , y = r sin θ , ∣ J ∣ = r :
= ∫ − π π ∫ 0 ∞ r e − ( r 2 + r 2 cos θ sin θ ) d r d θ
= ∫ − π π ⎣ ⎡ 2 ( 1 + cos θ sin θ ) e − r 2 ( 1 + cos θ sin θ ) ⎦ ⎤ ∞ 0 d θ
= 2 1 ∫ − π π 1 + cos θ sin θ 1 d θ
= 2 1 ⋅ 2 ⋅ ∫ − 2 π 2 π 1 + cos θ sin θ 1 ⋅ sec 2 θ sec 2 θ d θ
= ∫ − 2 π 2 π sec 2 θ + tan θ sec 2 θ d θ
u = tan θ ⟹ d u = sec 2 θ d θ
= ∫ − ∞ ∞ u 2 + u + 1 1 d u
= ∫ − ∞ ∞ ( u + 2 1 ) 2 + 4 3 1 d u
v = u + 2 1 ⟹ d v = d u
= ∫ − ∞ ∞ v 2 + 4 3 1 d v
= 3 4 ∫ − ∞ ∞ ( 3 2 v ) 2 + 1 1 d v
= 3 4 ⋅ 2 3 ⋅ tan − 1 ( 3 2 v ) ∣ ∣ ∣ ∣ ∣ − ∞ ∞
= 3 2 3 ⋅ [ 2 π − ( − 2 π ) ]
= 3 2 π 3
= 3 2 π
Then:
a = 2 , b = 2 , c = 3 , a + b + c = 7
Problem Loading...
Note Loading...
Set Loading...
I = ∫ R 2 e − ( x 2 + x y + y 2 ) d x d y = ∫ R 2 e − ( x + 2 y ) 2 − 4 3 y 2 d x d y = 3 2 ∫ R 2 e − ( u 2 + v 2 ) d u d v By the transformation x + 2 y = u 2 3 y = v = 3 2 ( ∫ R e − x 2 d x ) 2 = 3 2 π
Note: The jacobian of the transformation x + 2 y = u , 3 y = 2 v is as follows :
J = ∣ ∣ ∣ ∣ ∣ ∣ ∣ 1 0 − 3 1 3 2 ∣ ∣ ∣ ∣ ∣ ∣ ∣ = 3 2