Tangent integral

Calculus Level 1

Determine the indefinite integral of the following expression: ( tan x ) ( tan x + sec x ) . (\tan{x}) ( \tan{x}+ \sec{x} ).

Details and Assumptions:

Use C C as the constant of the integration.

tan x x + sin x + C \tan{x} - x + \sin{x} + C tan x x + sec x + C \tan{x} - x + \sec{x} + C tan x x + cos x + C \tan{x} - x + \cos{x} + C cos x x + sec x + C \cos{x} - x + \sec{x} + C

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rahma Anggraeni
May 6, 2014

( tan x ( tan x + sec x ) ) d x ∫(\tan x(\tan x + \sec x))dx

( tan 2 x + tan x sec x ) d x ∫(\tan^{2} x + \tan x \sec x)dx

( sec 2 x 1 + tan x sec x ) d x ∫(\sec^{2} x -1 + \tan x \sec x)dx

Since sec 2 x d x = tan x + c ∫\sec^{2} x dx=\tan x + c and tan x sec x 1 ) d x = sec x ∫\tan x \sec x-1)dx=\sec x so...

= tan x x + sec x + C =\boxed{\tan x -x+ \sec x+C}

in your solution 2nd last line having problem.

Harsh Bhavsar - 7 years, 1 month ago
Vishnu Khanna
May 10, 2014

Take the integral: integral tan(x) (tan(x)+sec(x)) dx

Expanding the integrand tan(x) (tan(x)+sec(x)) gives tan^2(x)+tan(x) sec(x): = integral (tan^2(x)+tan(x) sec(x)) dx

Integrate the sum term by term: = integral tan^2(x) dx+ integral tan(x) sec(x) dx

Rewrite tan(x) sec(x) as (sin(x))/(cos^2(x)): = integral tan^2(x) dx+ integral (sin(x))/(cos^2(x)) dx

For the integrand (sin(x))/(cos^2(x)), substitute u = cos(x) and du = -sin(x) dx: = integral -1/u^2 du+ integral tan^2(x) dx

Factor out constants: = integral tan^2(x) dx- integral 1/u^2 du

The integral of 1/u^2 is -1/u: = 1/u+ integral tan^2(x) dx

Write tan^2(x) as sec^2(x)-1: = 1/u+ integral (sec^2(x)-1) dx

Integrate the sum term by term and factor out constants: = 1/u- integral 1 dx+ integral sec^2(x) dx

The integral of sec^2(x) is tan(x): = 1/u+tan(x)- integral 1 dx

The integral of 1 is x: = 1/u-x+tan(x)+constant

Substitute back for u = cos(x): Answer: = -x+tan(x)+sec(x)+constant

Solve this question : integration of sinx÷(1+sinx)

Nilesh Padhi - 7 years ago

Log in to reply

Solution : integral sinx/ (1+sinx) dx (let's write numerator as sinx + 1 - 1) integral (sinx + 1 - 1)/ (1 + sinx) dx integral {1 - 1/(1+sinx)} dx integral {1} dx - integral 1/(1+sinx) dx x - integral 1-sinx/[(1+sinx)(1-sinx)] dx x - integral 1-sinx/1-sin^2x dx x - integral 1-sinx/cos^2x dx x - {integral 1/cos^2x - sinx/cos^2x} dx x - integral sec^2x dx + integral tanxsecx dx x - tanx + secx + c

Ritika S - 7 years ago

integrate cosx/x from npi to (n+1)pi

Neeraj Gupta - 6 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...