pretty problem

Calculus Level 4

Find 5050 0 1 ( 1 x 50 ) 100 . d x 0 1 ( 1 x 50 ) 101 . d x 5050 \frac{ \int_{0}^{1} ( 1- x^{50})^{100}.dx}{ \int_{0}^{1} ( 1- x^{50})^{101}.dx}

Details - This problem was asked in IIT examination


The answer is 5051.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

U Z
Oct 27, 2014

x = 5050 0 1 ( 1 x 50 ) 100 0 1 ( 1 x 50 ) 101 x = 5050 \frac{ \int_{0}^{1} ( 1- x^{50})^{100}}{ \int_{0}^{1} ( 1- x^{50})^{101}}

applying by parts in the denominator and then putting the limits we get

0 1 ( 1 x 50 ) 100 0 1 x 50 ( 1 x 50 ) 100 \frac{ \int_{0}^{1} ( 1- x^{50})^{100}}{ \int_{0}^{1} x^{50}( 1- x^{50})^{100}}

= 0 1 ( 1 x 50 ) 100 0 1 ( 1 ( 1 x 50 ) ) ( 1 x 50 ) 100 = \frac{ \int_{0}^{1} ( 1- x^{50})^{100}}{ \int_{0}^{1} (1 - ( 1 -x^{50}))( 1- x^{50})^{100}}

= 0 1 ( 1 x 50 ) 100 0 1 ( 1 x 50 ) 100 0 1 ( 1 x 50 ) 101 = \frac{ \int_{0}^{1} ( 1- x^{50})^{100}}{ \int_{0}^{1} ( 1 - x^{50})^{100} - \int_{0}^{1}( 1- x^{50})^{101}}

= 1 1 0 1 ( 1 x 50 ) 101 0 1 ( 1 x 50 ) 100 =\frac{1}{1 - \frac{ \int_{0}^{1} ( 1- x^{50})^{101}}{ \int_{0}^{1} ( 1- x^{50})^{100}}}

x = 1 1 5050 x x = \frac{1}{1 - \frac{5050}{x}}

thus x = 5051 x = 5051

there is something wrong in the first step. applying by parts does not bring me to these steps.

aditya vikram - 6 years, 7 months ago

Log in to reply

Once again Just Check @aditya vikram

U Z - 6 years, 7 months ago

Log in to reply

got it just, i was not applying the limits properly.

aditya vikram - 6 years, 7 months ago

Nice solution!

Just a thing in the problem statement: you forgot the d x dx , Btw how do you write at the middle of the line??

Hasan Kassim - 6 years, 7 months ago

Log in to reply

that's understood , thank you anyway , i am not understanding your last statement @hasan kassim

U Z - 6 years, 7 months ago
Hasan Kassim
Nov 2, 2014

A = 5050 0 1 ( 1 x 50 ) 100 d x 0 1 ( 1 x 50 ) 101 d x \displaystyle A=5050\frac{\displaystyle \int_0^1 (1-x^{50})^{100} dx }{\displaystyle \int_0^1 (1-x^{50})^{101} dx}

In both integrals, use substitution u = x 50 u=x^{50} to get :

A = 5050 0 1 u 49 50 ( 1 u ) 100 d u 0 1 u 49 50 ( 1 u ) 101 d u \displaystyle A=5050\frac{\displaystyle \int_0^1 u^{-\frac{49}{50}}(1-u)^{100} du }{\displaystyle \int_0^1 u^{-\frac{49}{50}}(1-u)^{101} du }

(Recall Beta Function properties.)

= 5050 B ( 1 50 , 101 ) B ( 1 50 , 102 ) = 5050 Γ ( 1 50 ) Γ ( 101 ) Γ ( 1 50 + 101 ) Γ ( 1 50 ) Γ ( 102 ) Γ ( 1 50 + 102 ) = 5050\frac{\displaystyle B(\frac{1}{50},101)}{\displaystyle B(\frac{1}{50},102)}= 5050\frac{\frac{\displaystyle \Gamma (\frac{1}{50})\Gamma (101)}{\displaystyle\Gamma (\frac{1}{50}+101)}}{\frac{\displaystyle\Gamma (\frac{1}{50})\Gamma (102)}{\displaystyle\Gamma (\frac{1}{50}+102)}}

= 5050 Γ ( 1 50 ) Γ ( 101 ) Γ ( 1 50 + 101 ) Γ ( 1 50 ) ( 101 ) Γ ( 101 ) ( 1 50 + 101 ) Γ ( 1 50 + 101 ) = 5051 \displaystyle = 5050\frac{\frac{\displaystyle\Gamma (\frac{1}{50})\Gamma (101)}{\displaystyle\Gamma (\frac{1}{50}+101)}}{\frac{\displaystyle\Gamma (\frac{1}{50})(101)\Gamma (101)}{\displaystyle (\frac{1}{50}+101)\Gamma (\frac{1}{50}+101)}} = \boxed{5051}

( Γ ( x + 1 ) = x Γ ( x ) \displaystyle \Gamma (x+1) = x\Gamma (x) )

Devansh Sharma
Aug 24, 2017

Use beta function..!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...