Do I need to know special functions?

Calculus Level 4

Given I = 0 π / 2 x sin ( x ) d x \displaystyle I= \int^{\pi/2}_{0} \frac{x}{\sin (x)} \, dx and J = 0 1 tan 1 ( x ) x d x \displaystyle J = \int^1_0 \frac{\tan^{-1}( x)}{x}\, dx , find the value of I J \dfrac I J .


The answer is 2.000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ronak Agarwal
Jun 17, 2015

You don't need to know special functions to solve this problem.

Take J = 0 1 tan 1 x x d x \displaystyle J = \int _{ 0 }^{ 1 }{ \frac { \tan ^{ -1 }{ x } }{ x } dx }

Put x = t a n ( θ 2 ) x=tan(\frac{\theta}{2}) , to get :

J = 1 2 0 π / 2 θ sin θ d θ = I 2 \displaystyle J = \frac { 1 }{ 2 } \int _{ 0 }^{ \pi /2 }{ \frac { \theta }{ \sin { \theta } } d\theta } = \frac{I}{2}

I J = 2 \large \boxed{\Rightarrow \frac{I}{J} = 2}

By the way the value of J = G J = G where G is the catalan's constant.

Another(I think!) one solution.

First change the variable tan 1 x = y \displaystyle \tan^{-1}x=y

then J \displaystyle J becomes 0 π / 4 y sin y cos y d y = 2 y = 0 π / 2 1 2 2 y sin 2 y d 2 y = 1 2 I \displaystyle \int_{0}^{\pi/4} \frac{y}{\sin y \cos y} dy=\int_{2y=0}^{\pi/2} \frac{1}{2}\frac{2y}{\sin 2y} d 2y=\frac{1}{2} I

So I J = 2 \displaystyle \frac{I}{J}=2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...