Is it a series expansion of cot x \cot x ?

Calculus Level 4

V = x = 1 180 x sin ( x ) \large V = \sum_{x=1}^{180} x \sin(x^\circ)

For V V as defined above, find V \lfloor V \rfloor .

Notation: \lfloor \cdot \rfloor denotes the floor function .


The answer is 10312.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

V = x = 1 180 x sin x = x = 1 179 x sin x + 180 sin 18 0 0 = x = 1 89 x sin x + 90 sin 9 0 + x = 91 179 x sin x = x = 1 89 x sin x + 90 + x = 1 89 ( 180 x ) sin ( 180 x ) Note that sin ( 180 x ) = sin x = x = 1 89 x sin x + 90 + x = 1 89 ( 180 x ) sin x = 180 x = 1 89 sin x + 90 = 180 sin 1 x = 1 89 sin 1 sin x + 90 By sin A sin B = 1 2 ( cos ( A B ) cos ( A + B ) ) = 90 sin 1 x = 1 89 ( cos ( x 1 ) cos ( x + 1 ) ) + 90 = 90 sin 1 ( cos 0 + cos 1 cos 8 9 cos 9 0 ) + 90 10312.98 \begin{aligned} V & = \sum_{x=1}^{\color{#3D99F6}180} x \sin x^\circ \\ & = \sum_{x=1}^{\color{#3D99F6}179} x \sin x^\circ + 180 \cancel{\sin 180^\circ}^0 \\ & = \sum_{x=1}^{89} x \sin x^\circ + 90 \sin 90^\circ + \sum_{x=91}^{179} x \sin x^\circ \\ & = \sum_{x=1}^{89} x \sin x^\circ + 90 + \sum_{x=1}^{89} (180-x) \color{#3D99F6} \sin (180-x)^\circ & \small \color{#3D99F6} \text{Note that }\sin (180-x)^\circ = \sin x ^\circ \\ & = \sum_{x=1}^{89} x \sin x^\circ + 90 + \sum_{x=1}^{89} (180-x) \color{#3D99F6} \sin x^\circ \\ & = 180 \sum_{x=1}^{89} \sin x^\circ + 90 \\ & = \frac {180}{\sin 1^\circ} \sum_{x=1}^{89} {\color{#3D99F6} \sin 1^\circ \sin x^\circ} + 90 & \small \color{#3D99F6} \text{By }\sin A \sin B = \frac 12 \left(\cos (A-B) - \cos (A+B)\right) \\ & = \frac {\color{#3D99F6}90}{\sin 1^\circ} \sum_{x=1}^{89} {\color{#3D99F6} \left(\cos (x-1)^\circ - \cos (x+1)^\circ \right)} + 90 \\ & = \frac {90}{\sin 1^\circ} \left(\cos 0^\circ + \cos 1^\circ - \cos 89^\circ - \cos 90^\circ \right) + 90 \\ & \approx 10312.98 \end{aligned}

V = 10312 \implies \lfloor V \rfloor = \boxed{10312}

Nice solution. Because you solved it, now I believe the answer is correct. I have entered into Mathwalfram alpha and it gave me a different answer. I must have done something wrong somewhere.

Hana Wehbi - 4 years, 1 month ago

Log in to reply

I got the right answer (see below).

Chew-Seong Cheong - 4 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...