A calculus problem by Ossama Ismail

Calculus Level 3

Find the minimum value of sin 3 x cos x + cos 3 x sin x \dfrac{\sin^3 x}{\cos x} + \dfrac{ \cos ^3 x}{\sin x} for 0 < x < π 2 0 < x< \frac \pi2 . Give your answer to 2 decimal places.


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Feb 12, 2017

We note that sin 3 x cos x > 0 \dfrac {\sin^3 x}{\cos x} > 0 and cos 3 x sin x > 0 \dfrac {\cos^3 x}{\sin x} > 0 for 0 < x < π 2 0 < x < \frac \pi 2 . We can thus apply AM-GM inequality as follows:

sin 3 x cos x + cos 3 x sin x 2 sin 3 x cos x cos 3 x sin x = 2 sin x cos x = sin ( 2 x ) \begin{aligned} \frac {\sin^3 x}{\cos x} + \frac {\cos^3 x}{\sin x} & \ge 2 \sqrt {\frac {\sin^3 x}{\cos x} \cdot \frac {\cos^3 x}{\sin x}} = 2 \sin x \cos x = \sin (2x) \end{aligned}

Equality occurs when sin 3 x cos x = cos 3 x sin x sin 4 x = cos 4 x x = π 4 \dfrac {\sin^3 x}{\cos x} = \dfrac {\cos^3 x}{\sin x} \implies \sin^4 x = \cos^4 x \implies x = \frac \pi 4

sin 3 x cos x + cos 3 x sin x sin π 2 = 1 \begin{aligned} \frac {\sin^3 x}{\cos x} + \frac {\cos^3 x}{\sin x} & \ge \sin \frac \pi 2 = \boxed{1} \end{aligned}

Rab Gani
Jan 19, 2019

We can solve this problem by differentiation, i.e. df/dx = 0. for f(x) = (sin ^4 x+cos ^4 x)/(sin⁡ x. cos⁡x ) f(x) = (sin^4 x+cos^4 x)/(sin⁡x. cos⁡x ) = (1-2sin^2 xcos^2 x)/(1/2 sin⁡2x ) = (1-1/2 sin^2 2x)/(1/2 sin⁡2x ) = (2/sin⁡2x) - sin 2x df/dx = - cos 2x (4/(〖sin〗^2 2x) + 2), df/df=0, cos 2x= 0, x=π/4, Substitute x=π/4, to the expression above then we find the minimum value is 1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...