Another Fun Limit

Calculus Level 3

There is only one value of the constant k k such that lim x 0 ( e x 3 x 3 1 ) ( ln ( 1 + x ) x ) x k \lim_{x\rightarrow 0} \frac{(e^{x^3} - x^3 - 1)(\ln(1+x) - x)}{x^k} is non-zero and finite. What is this value of k k .

8 9 6 7

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Peter Chiappini Staff
Jul 27, 2016

Relevant wiki: Limits by Taylor series

Although the limit is of the form 0 0 \frac{0}{0} , L'Hospital's rule would get rather messy rather quickly. So we use the Taylor expansions of e x 3 e^{x^3} and ln ( 1 + x ) \ln(1+x) to get: = lim x 0 ( e x 3 x 3 1 ) ( ln ( 1 + x ) x ) x k = lim x 0 [ ( 1 + x 3 1 ! + x 6 2 ! + x 9 3 ! + ) x 3 1 ] [ ( x x 2 2 + x 3 3 x 4 4 + ) x ] x k = lim x 0 ( x 6 2 + x 9 6 + ) ( x 2 2 + x 3 3 x 4 4 + ) x k = lim x 0 ( x 8 4 + x 9 6 x 10 8 + ) x k \begin{aligned} &\phantom{{}={}} \lim_{x\rightarrow 0} \frac{(e^{x^3} - x^3 - 1)(\ln(1+x) - x)}{x^k} \\ &= \lim_{x\rightarrow 0} \frac{[(1 + \frac{x^3}{1!} + \frac{x^6}{2!} + \frac{x^9}{3!} + \cdots) - x^3 - 1][(x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots) - x]}{x^k} \\ &= \lim_{x\rightarrow 0} \frac{( \frac{x^6}{2} + \frac{x^9}{6} + \cdots)(- \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} +\cdots )}{x^k} \\ &= \lim_{x\rightarrow 0} \frac{( -\frac{x^8}{4} + \frac{x^9}{6} - \frac{x^{10}}{8} +\cdots)}{x^k} \end{aligned} Now, we see that if k > 8 k > 8 , the limit will be infinite, and if k < 8 k < 8 , the limit will be zero. Thus the only value of k k for which the expression is non-zero and finite is k = 8 k = 8 .

In the exponential series u forgot to give the factorial in denominator

Kushal Bose - 4 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...