Calculus

Calculus Level 3

lim x 0 1 x 3 0 x t 2 t 4 + 1 d t = ? \large \lim_{x\to0} \dfrac1{x^3} \int_0^x \dfrac{t^2}{t^4+1} \, dt = \, ?

Give your answer to 2 decimal places.


The answer is 0.33.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sabhrant Sachan
Jun 15, 2016

lim x 0 0 x t 2 t 4 + 1 d t x 3 \displaystyle\lim_{x \to 0} \dfrac{\displaystyle\int_{0}^{x} \dfrac{t^2}{t^4+1}\cdot dt}{x^3}

The Limit is of 0 0 form. We can use L’Hospital’s Rule According to Leibniz integral rule : If I = g ( x ) h ( x ) f ( t ) d t then d I d x = f ( h ( x ) ) h ( x ) f ( g ( x ) ) g ( x ) We have , lim x 0 x 2 x 4 + 1 1 0 3 x 2 lim x 0 1 3 ( x 4 + 1 ) = 1 3 \text{The Limit is of } \dfrac{0}{0} \text{ form. We can use L'Hospital's Rule} \\ \text{According to Leibniz integral rule : } \\ \text{If I } = \displaystyle\int_{g(x)}^{h(x)}f(t)\cdot dt \\ \text{ then } \quad \dfrac{dI}{dx} = f(h(x))\cdot h^{'}(x)-f(g(x))\cdot g^{'}(x) \\ \text{We have , } \\ \displaystyle\lim_{x \to 0} \dfrac{\dfrac{x^2}{x^4+1}\cdot 1- 0 }{3x^2} \\ \displaystyle\lim_{x \to 0} \dfrac{1}{3(x^4+1)} = \boxed{\dfrac13}

Prakhar Bindal
Jun 15, 2016

Differentiate using Newton Leibnitz theorem for 0/0 form (L Hospital's rule)

You will get limit as 1/3(x^4+1)

As x tends to zero we get limit as 1/3

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...