A calculus problem by Rahil Sehgal

Calculus Level 5

Suppose the sum

n = 1 [ H n ln n γ 1 2 n ] \sum_{n=1}^\infty \left[ H_n - \ln n - \gamma - \dfrac{1}{2n} \right]

can be expressed in the form of 1 m ( a c ln ( k π ) + b γ ) \dfrac{1}{m} \big(a - c\ln(k\pi)+b\gamma \big) , where a , b , c , a, b, c, and m m are positive integers and gcd ( a , b , c , m ) = 1 \gcd(a,b,c,m) = 1 . Find a + b + c + k + m a+b+c+k+m .


Notation: γ 0.5772 \gamma \approx 0.5772 denotes the Euler-Mascheroni constant .


A similar problem .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
May 9, 2017

Since H n ln n γ = n x x x 2 d x H_n - \ln n - \gamma \; = \; \int_n^\infty \frac{x - \lfloor x\rfloor}{x^2}\,dx we see that H n ln n γ 1 2 n = n x x 1 2 x 2 d x = k = n k k + 1 x x 1 2 x 2 d x = k = n 0 1 x 1 2 ( x + k ) 2 d x H_n - \ln n - \gamma - \tfrac{1}{2n} \; = \; \int_n^\infty \frac{x - \lfloor x \rfloor - \frac12}{x^2}\,dx \; = \; \sum_{k=n}^\infty \int_k^{k+1}\frac{x-\lfloor x \rfloor - \frac12}{x^2}\,dx \; = \; \sum_{k=n}^\infty \int_0^1 \frac{x-\frac12}{(x+k)^2}\,dx Since each of the integrals 0 1 x 1 2 ( x + k ) 2 d x \int_0^1 \frac{x-\frac12}{(x+k)^2}\,dx is negative, we can write \[\begin{array} {} S & = \displaystyle \; \sum_{n=1}^\infty \Big(H_n - \ln n - \gamma - \tfrac{1}{2n}\Big) \; = \; \sum_{n=1}^\infty \sum_{k=n}^\infty \int_0^1 \frac{x-\frac12}{(x+k)^2}\,dx \\ & = \displaystyle\; \sum_{k=1}^\infty \sum_{n=1}^k \int_0^1 \frac{x-\frac12}{(x+k)^2}\,dx \; =\; \sum_{k=1}^\infty k \int_0^1 \frac{x-\frac12}{(x+k)^2}\,dx \\ & = \displaystyle \sum_{k=1}^\infty k \int_0^1 \Big( \frac{1}{x+k} - \frac{k+\frac12}{(x+k)^2}\Big)\,dx \; = \; \sum_{k=1}^\infty k \,\Big[\ln(x+k) + \frac{k+\frac12}{x+k}\Big]_0^1 \\ & = \displaystyle \lim_{K \to\infty}\sum_{k=1}^K \Big(k\ln\big(\tfrac{k+1}{k}\big) - \frac{k+\frac12}{k+1}\Big) \; = \; \lim_{K \to \infty}\Big[\ln\Big(\frac{(K+1)^K}{K!}\Big) - K + \tfrac12\big(H_{K+1} - 1\big)\Big] \\ & = \displaystyle \lim_{K \to \infty}\Big[\ln\Big(\frac{(K+1)^{K+\frac12}}{e^K K!}\Big) + \tfrac12\big(H_{K+1} - \ln(K+1) - 1\big)\Big] \end{array} \] A simple application of Stirling's approximation tells us that S = ln ( e 2 π ) + 1 2 ( γ 1 ) = 1 2 ( 1 + γ ln ( 2 π ) ) S \; = \; \ln\big(\tfrac{e}{\sqrt{2\pi}}\big) + \tfrac12(\gamma - 1) \; = \; \tfrac12\big(1 + \gamma - \ln(2\pi)\big) making the answer 1 + 1 + 1 + 2 + 2 = 7 1+1+1+2+2 = \boxed{7} .

Did the same way.

Aditya Kumar - 3 years, 11 months ago
Aareyan Manzoor
Jul 6, 2017

another way is to simply write the limit lim k n = 1 k ( H n ln ( n ) γ 1 / 2 n ) = lim k ( ( k + 1 ) ( H k + 1 1 ) ln ( Γ ( k + 1 ) ) γ k H k 2 ) \lim_{k\to \infty} \sum_{n=1}^k (H_n-\ln(n)-\gamma-1/2n)=\lim_{k\to \infty} \left( (k+1)(H_{k+1}-1)-\ln(\Gamma(k+1))-\gamma k-\dfrac{H_k}{2}\right) this can be manipulated into lim k ( ( k + 1 2 ) ψ ( k + 1 ) ln ( Γ ( k + 1 ) ) k ) + γ 2 \lim_{k\to \infty} \left( \left(k+\dfrac{1}{2}\right) \psi(k+1)-\ln(\Gamma(k+1))-k\right)+\dfrac{\gamma}{2} we can use stirling approximation ln ( Γ ( k + 1 ) ) ( k + 1 2 ) ln ( k ) k + 1 2 ln ( 2 π ) ( k + 1 2 ) ψ ( k + 1 ) ( k + 1 2 ) ( 1 2 k + ln ( k ) ) = 1 2 + 1 4 k + ( k + 1 2 ) ln ( k ) \ln(\Gamma(k+1))\approx \left(k+\dfrac{1}{2}\right)\ln(k)-k+\dfrac{1}{2} \ln(2\pi)\to \left(k+\dfrac{1}{2}\right)\psi(k+1)\approx \left(k+\dfrac{1}{2}\right) \left( \dfrac{1}{2k}+\ln(k)\right) =\dfrac{1}{2}+\dfrac{1}{4k}+\left(k+\dfrac{1}{2}\right)\ln(k) where the second one is just the derivative of the first one multiplied by ( k + 1 2 ) \left(k+\dfrac{1}{2}\right) . plugging this in the limit we will have a lot of cancelation resulting in lim k ( 1 2 + 1 4 k 1 2 ln ( 2 π ) ) + γ 2 = 1 2 ( 1 ln ( 2 π ) + γ ) \lim_{k\to \infty} \left(\dfrac{1}{2}+\dfrac{1}{4k}-\dfrac{1}{2} \ln(2\pi)\right)+\dfrac{\gamma}{2}=\boxed{\dfrac{1}{2} (1-\ln(2\pi)+\gamma)}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...