Double integral with fractional part

Calculus Level 5

0 1 0 1 x 2017 y 2017 { x y } { y x } d x d y \large \int_{0}^{1} \int_{0}^{1} x^{2017} y^{2017} {\left\{ \dfrac xy \right\}} {\left\{ \dfrac yx \right\}} dx \ dy

If the closed form of the integral above can be represented as 1 A 2 ζ ( B ) C \dfrac{1}{A^2} - \dfrac{ \zeta(B) }{C} , find A + B + C A+B+C .


You may also like


The answer is 4078379.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Jun 1, 2017

We recall the (by now) standard result 0 1 t m { t 1 } d t = 1 m ζ ( m + 1 ) m + 1 m N . \int_0^1 t^m \big\{t^{-1}\big\}\,dt \; = \; \frac{1}{m} - \frac{\zeta(m+1)}{m+1} \hspace{2cm} m \in \mathbb{N}\;. Then, using the substitution y = t x y = tx , 0 1 0 1 x N y N { x y } { y x } d x d y = 2 0 1 d x 0 x d y x N y N { x y } y x = 2 0 1 d x 0 x d y x N 1 y N + 1 { x y } = 2 0 1 d x 0 1 x d t x N 1 t N + 1 x N + 1 { t 1 } = 2 0 1 x 2 N + 1 d x 0 1 t N + 1 { t 1 } d t = 1 N + 1 0 1 t N + 1 { t 1 } d t = 1 ( N + 1 ) 2 ζ ( N + 2 ) ( N + 1 ) ( N + 2 ) \begin{aligned} \int_0^1 \int_0^1 x^N y^N \big\{\tfrac{x}{y}\big\} \big\{ \tfrac{y}{x} \big\}\,dx\,dy & = 2\int_0^1\,dx \int_0^x\,dy\, x^N y^N \big\{\tfrac{x}{y}\big\} \tfrac{y}{x} \\ & = 2\int_0^1 \,dx \int_0^x\,dy \,x^{N-1}y^{N+1} \big\{\tfrac{x}{y}\big\} \; = \; 2\int_0^1\,dx \int_0^1\,x\,dt \,x^{N-1} t^{N+1}x^{N+1} \big\{ t^{-1}\big\} \\ & = 2\int_0^1 x^{2N+1}\,dx \int_0^1 t^{N+1} \big\{t^{-1}\big\}\,dt \; = \; \frac{1}{N+1}\int_0^1 t^{N+1}\big\{ t^{-1}\big\}\, dt \\ & = \frac{1}{(N+1)^2} - \frac{\zeta(N+2)}{(N+1)(N+2)} \end{aligned} With N = 2017 N = 2017 the answer is ( N + 1 ) + ( N + 2 ) + ( N + 1 ) ( N + 2 ) = 4078379 (N+1) + (N+2) + (N+1)(N+2) \; = \; \boxed{4078379}

Shivam Sharma
Jun 15, 2017

See here My Solution... A = 2018 , B = 2019 , C = (2018)(2019) . Hence A+B+C = 4078379 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...