∫ 0 ∞ ∫ x ∞ e − y 2 d y d x
If the multiple integral above can be expressed in the form of b a where a and b are positive coprime integers, then enter a + b as your answer.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Way simpler than mine! +1!
The theorem makes the problem much simpler
I = ∫ 0 ∞ ∫ x ∞ e − y 2 d y d x
Make b = y − x , a = x . The limits for both a and b will be 0 to ∞ , and the determinant of the jacobian will be 1 . y will be a + b . So:
I = ∫ 0 ∞ ∫ 0 ∞ e − ( a + b ) 2 d b d a
Using polar coordinates, a = r cos θ , b = r sin θ , ∣ J ∣ = r :
I = ∫ 0 2 π ∫ 0 ∞ r e − ( r 2 + 2 r 2 cos θ sin θ ) d r d θ
I = ∫ 0 2 π ∫ 0 ∞ r e − r 2 ( 1 + 2 cos θ sin θ ) d r d θ
I = ∫ 0 2 π ⎣ ⎡ − 2 ( 1 + 2 cos θ sin θ ) e − r 2 ( 1 + 2 cos θ sin θ ) ⎦ ⎤ 0 ∞ d θ
I = 2 1 ∫ 0 2 π 1 + 2 cos θ sin θ 1 d θ .
Make u = tan θ . Then cos θ = u 2 + 1 1 , sin θ = u 2 + 1 u , d u = s e c 2 θ d θ → d θ = d u cos 2 θ = u 2 + 1 d u . So:
I = 2 1 ∫ 0 ∞ ( u 2 + 1 ) ( 1 + 2 u 2 + 1 1 u 2 + 1 u ) d u d u
I = 2 1 ∫ 0 ∞ ( u 2 + 1 ) ( 1 + 2 u 2 + 1 u ) d u d u
I = 2 1 ∫ 0 ∞ u 2 + 2 u + 1 d u d u
I = 2 1 ∫ 0 ∞ ( u + 1 ) 2 d u d u
I = 2 1 [ − u + 1 1 ] 0 ∞
I = 2 1
Then:
a = 1 , b = 2 , a + b = 3
Problem Loading...
Note Loading...
Set Loading...
By Fubini-Tonelli, ∫ 0 ∞ d x ∫ x ∞ e − y 2 d y = ∫ 0 ∞ d y ∫ 0 y e − y 2 d x = ∫ 0 ∞ y e − y 2 d y = 2 1 ∫ 0 ∞ e − u d u = 2 1 .