A calculus problem by Rahil Sehgal

Calculus Level 4

0 x e y 2 d y d x \large \int_{0}^{∞} \int_{x}^{∞} e^{-y^{2}} dy \; dx

If the multiple integral above can be expressed in the form of a b \dfrac{a}{b} where a a and b b are positive coprime integers, then enter a + b a+b as your answer.


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Brian Moehring
Apr 30, 2017

By Fubini-Tonelli, 0 d x x e y 2 d y = 0 d y 0 y e y 2 d x = 0 y e y 2 d y = 1 2 0 e u d u = 1 2 . \int_0^\infty dx \int_x^\infty e^{-y^2}dy = \int_0^\infty dy \int_0^y e^{-y^2}dx = \int_0^\infty ye^{-y^2}dy = \frac 12\int_0^\infty e^{-u}du = \frac 12.

Way simpler than mine! +1!

Guilherme Niedu - 4 years, 1 month ago

The theorem makes the problem much simpler

Aditya Kumar - 3 years, 11 months ago
Guilherme Niedu
Apr 30, 2017

I = 0 x e y 2 d y d x \large \displaystyle I = \int_0^{\infty} \int_x^{\infty} e^{-y^2} dy dx

Make b = y x \color{#20A900} b = y-x , a = x \color{#20A900} a = x . The limits for both a \color{#20A900} a and b \color{#20A900} b will be 0 \color{#20A900} 0 to \color{#20A900} \infty , and the determinant of the jacobian will be 1 \color{#20A900} 1 . y \color{#20A900} y will be a + b \color{#20A900} a+b . So:

I = 0 0 e ( a + b ) 2 d b d a \large \displaystyle I = \int_0^{\infty} \int_0^{\infty} e^{-(a+b)^2} db da

Using polar coordinates, a = r cos θ \color{#20A900} a = r \cos\theta , b = r sin θ \color{#20A900} b = r \sin \theta , J = r \color{#20A900} |J| = r :

I = 0 π 2 0 r e ( r 2 + 2 r 2 cos θ sin θ ) d r d θ \large \displaystyle I = \int_0^{\frac{\pi}{2}} \int_0^{\infty} r e^{-(r^2 + 2r^2\cos \theta\sin \theta ) } dr d \theta

I = 0 π 2 0 r e r 2 ( 1 + 2 cos θ sin θ ) d r d θ \large \displaystyle I = \int_0^{\frac{\pi}{2}} \int_0^{\infty} r e^{-r^2 (1 + 2 \cos \theta\sin \theta) } dr d \theta

I = 0 π 2 [ e r 2 ( 1 + 2 cos θ sin θ ) 2 ( 1 + 2 cos θ sin θ ) ] 0 d θ \large \displaystyle I = \int_0^{\frac{\pi}{2}} \left [ \frac{e^{-r^2 (1 + 2 \cos \theta\sin \theta) }}{-2 (1 + 2 \cos \theta\sin \theta) } \right ]_0^{\infty} d\theta

I = 1 2 0 π 2 1 1 + 2 cos θ sin θ d θ \large \displaystyle I = \frac12 \int_0^{\frac{\pi}{2}} \frac{1}{1+ 2 \cos \theta\sin \theta} d\theta .

Make u = tan θ \color{#20A900} u = \tan \theta . Then cos θ = 1 u 2 + 1 \color{#20A900} \cos \theta = \frac{1}{\sqrt{u^2+1}} , sin θ = u u 2 + 1 \color{#20A900} \sin \theta = \frac{u}{\sqrt{u^2+1}} , d u = s e c 2 θ d θ d θ = d u cos 2 θ = d u u 2 + 1 \color{#20A900} du = sec^2 \theta d\theta \rightarrow d \theta = du \cos^2 \theta = \frac{du}{u^2+1} . So:

I = 1 2 0 d u ( u 2 + 1 ) ( 1 + 2 1 u 2 + 1 u u 2 + 1 ) d u \large \displaystyle I = \frac12 \int_0^{\infty} \frac{du}{(u^2+1)(1 + 2 \frac{1}{\sqrt{u^2+1}} \frac{u}{\sqrt{u^2+1}} )} du

I = 1 2 0 d u ( u 2 + 1 ) ( 1 + 2 u u 2 + 1 ) d u \large \displaystyle I = \frac12 \int_0^{\infty} \frac{du}{ (u^2+1)( 1 + 2 \frac{u}{u^2+1} ) } du

I = 1 2 0 d u u 2 + 2 u + 1 d u \large \displaystyle I = \frac12 \int_0^{\infty} \frac{du}{u^2 + 2u + 1}du

I = 1 2 0 d u ( u + 1 ) 2 d u \large \displaystyle I = \frac12 \int_0^{\infty} \frac{du}{ (u+1)^2} du

I = 1 2 [ 1 u + 1 ] 0 \large \displaystyle I = \frac12 \left[ -\frac{1}{u+1} \right ] _0^{\infty}

I = 1 2 \color{#20A900} \boxed{ \large \displaystyle I = \frac12 }

Then:

a = 1 , b = 2 , a + b = 3 \color{#3D99F6} \large \displaystyle a=1, b=2, \boxed{ \large \displaystyle a+b=3}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...