A calculus problem by Rahil Sehgal

Calculus Level 5

0 0 0 d x d y d z ( 1 + x + y + z ) 7 / 2 \displaystyle\int_{0}^{\infty} \displaystyle\int_{0}^{\infty} \displaystyle\int_{0}^{\infty} \dfrac{dx \; dy \; dz}{( 1+x+y+z)^{{7/2}}}

If the multiple integral above can be expressed as a b \dfrac ab , where a a and b b are coprime positive integers, find a + b a+b .


The answer is 23.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

For Generalizing things a bit let us consider the integral,

F n ( m ) = 0 0 0 d x 1 d x 2 d x n ( 1 + x 1 + x 2 + + x n ) m \displaystyle F_n(m) \; = \; \int_0^\infty \int_0^\infty\cdots \int_0^\infty\;\dfrac{dx_1\;dx_2\;\cdots dx_n}{(1+x_1+x_2+\cdots+x_n)^m}

Noting that, 1 ( 1 + x 1 + x 2 + + x n ) m = 1 Γ ( m ) ( 0 e u ( 1 + i x i ) u m 1 d u ) \displaystyle \dfrac{1}{(1+x_1+x_2+\cdots+x_n)^m}=\dfrac{1}{\Gamma(m)}\left(\int_0^\infty e^{-u(1+\sum_{i} x_i)}u^{m-1}\; du\right) and substituting this back into F n ( m ) F_n(m) we have,

F n ( m ) = 0 0 0 1 Γ ( m ) ( 0 e u ( 1 + i x i ) u m 1 d u ) d x 1 d x 2 d x n = 1 Γ ( m ) 0 e u ( 0 e u x 1 d x 1 ) ( 0 e u x n d x n ) u m 1 d u = 1 Γ ( m ) 0 e u ( 0 e u x d x ) n u m 1 d u = 1 Γ ( m ) 0 e u × 1 u n u m 1 d u = 1 Γ ( m ) 0 e u u m n 1 d u = Γ ( m n ) Γ ( m ) \displaystyle \begin{aligned} F_n(m)&=\int_0^\infty \int_0^\infty\cdots \int_0^\infty\; \dfrac{1}{\Gamma(m)}\left(\int_0^\infty e^{-u(1+\sum_{i} x_i)}u^{m-1}\; du\right) \; dx_1\;dx_2\cdots dx_n \\ &= \dfrac{1}{\Gamma(m)} \int_0^\infty e^{-u}\;\left(\int_0^\infty e^{-ux_1}\; dx_1\right)\cdots\left(\int_0^\infty e^{-ux_n}\; dx_n\right)\; u^{m-1}\; du \\ &= \dfrac{1}{\Gamma(m)}\int_0^\infty e^{-u}\;\left(\int_0^\infty e^{-ux}\;dx\right)^n\;u^{m-1}\;du \\ &=\dfrac{1}{\Gamma(m)}\int_0^\infty e^{-u}\times \dfrac{1}{u^n}u^{m-1}\; du \\ &= \dfrac{1}{\Gamma(m)}\int_0^\infty e^{-u}u^{m-n-1}\;du \\ &=\dfrac{\Gamma(m-n)}{\Gamma(m)} \end{aligned}

Put n = 3 , m = 7 / 2 n=3,m=7/2 to derive the answer as 8 15 \boxed{\dfrac{8}{15}}

Anirban Karan
Apr 27, 2017

Let us change the variables from ( x , y , z ) (x,y,z) to ( x , y , z ) (x,y,z') where z = x + y + z z'=x+y+z . Then, d x d y d z = d x d y d z dx\, dy\, dz=dx\, dy\, dz' and for particular ( x , y ) (x,y) , z z' varies from ( x + y ) (x+y) to \infty . Then, 0 0 0 d x d y d z ( 1 + x + y + z ) 7 / 2 = 0 d x 0 d y ( x + y ) d z ( 1 + z ) 7 / 2 = 2 5 0 d x 0 d y ( 1 + x + y ) 5 / 2 = 2 5 0 d x x d y ( 1 + y ) 5 / 2 [ y = x + y ] [ By changing variables from ( x , y ) to ( x , y ) ] = 2 5 2 3 0 d x ( 1 + x ) 3 / 2 = 2 5 2 3 2 1 = 8 15 \begin{aligned}&\quad \int_{0}^{\infty} \displaystyle\int_{0}^{\infty} \displaystyle\int_{0}^{\infty} \dfrac{dx \; dy \; dz}{( 1+x+y+z)^{{7/2}}}\\&=\displaystyle\int_{0}^{\infty} dx \displaystyle\int_{0}^{\infty} dy \displaystyle\int_{(x+y)}^{\infty} \dfrac{ dz'}{( 1+z')^{{7/2}}}\\ &=\frac{2}{5}\int_{0}^{\infty} dx \displaystyle\int_{0}^{\infty} \dfrac{ dy}{( 1+x+y)^{5/2}}\\ &=\frac{2}{5}\int_{0}^{\infty} dx \displaystyle\int_{x}^{\infty} \dfrac{ dy'}{( 1+y')^{5/2}} \quad \color{#3D99F6}[y'=x+y]\\ & \quad\color{#20A900}[\text{By changing variables from } (x,y) \text{ to } (x,y')]\\ &=\frac{2}{5}\cdot\frac{2}{3}\int_{0}^{\infty} \dfrac{ dx}{( 1+x)^{3/2}}\\ &=\frac{2}{5}\cdot\frac{2}{3}\cdot\frac{2}{1}=\frac{8}{15}\end{aligned}

So, a + b = 8 + 15 = 23 \boxed{a+b=8+15=23}

Let a = 1 + x + y + z a = 1 + x + y + z . The integral becomes 1 d a a 7 / 2 0 x , y x + y a 1 d x d y . \int_1^\infty da\ a^{-7/2} \iint_{0 \leq x,y}^{x+y \leq a-1} dx\ dy. The integration over x x and y y is equivalent to finding the area of the region defined by x , y 0 x,y \geq 0 and x + y a 1 x+y \leq a-1 , which is a right triangle with legs a 1 a-1 , and therefore area 1 2 ( a 1 ) 2 \tfrac12 (a-1)^2 . Thus we continue 1 1 2 ( a 1 ) 2 a 7 / 2 d a = 1 ( 1 2 a 3 / 2 a 5 / 2 + 1 2 a 7 / 2 ) d a = 1 2 1 1 / 2 a 1 / 2 1 3 / 2 a 3 / 2 + 1 2 1 5 / 2 a 5 / 2 1 1 2 2 2 3 + 1 2 2 5 = 1 2 3 + 1 5 = 8 15 . \int_1^\infty \frac12 (a-1)^2 a^{-7/2}\ da \\ = \int_1^\infty \left(\frac 12 a^{-3/2} - a^{-5/2} + \frac12 a^{-7/2}\right)\ da \\ = \left.\frac12\cdot \frac 1{-1/2} a^{-1/2} - \frac 1{-3/2} a^{-3/2} + \frac12\cdot \frac 1{-5/2} a^{-5/2}\right|_1^\infty \\ \frac12\cdot 2 - \frac 2 3 + \frac12\cdot \frac 2 5 = 1 - \frac 2 3 + \frac 1 5 = \frac 8{15}. Thus the answer is 8 + 15 = b o x e d 23 8 + 15 = boxed{23} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...