An algebra problem by Rajdeep Dhingra

Algebra Level 2

T h e G r e a t e s t V a l u e A s s u m e d b y t h e F u n c t i o n f ( x ) = 5 x 3 i s : The\quad Greatest\quad Value\quad Assumed\quad by\quad the\quad Function\\ f(x)\quad =\quad 5\quad -\quad |x\quad -\quad 3|\quad is\quad :


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rajdeep Dhingra
Oct 17, 2014

T o f i n d M a x i m u m V a l u e W e w i l l d i f f e r e n t i a t e t h e f u n c t i o n a n d e q u a l i t t o 0 d d x ( 5 x 3 ) = 3 x x 3 = 0 3 x = 0 x = 3 F i n d f ( 3 ) = 5 ( m a x ) To\quad find\quad Maximum\quad Value\quad We\\ will\quad differentiate\quad the\quad function\quad \\ and\quad equal\quad it\quad to\quad 0\\ \frac { d }{ dx } (5-\quad |x\quad -\quad 3|)\quad =\quad \frac { 3\quad -\quad x }{ |x\quad -\quad 3| } \quad =\quad 0\\ 3\quad -\quad x\quad =\quad 0\\ x\quad =\quad 3\\ Find\quad f(3)\\ =\quad 5\quad (max)

Archit Boobna
Oct 17, 2014

We know that |x-3| can't be negative. So to find max value of 5- |x-3|, we have to get |x-3| to 0. Which gives us 5.

(Better and Simpler than Rajdeep's solution... )

Maximum occurs at x = 3 R x=3\in \mathbb{R} and is the equality case for the following inequality:

5 x 3 5 5-|x-3|\leq 5

Prasun Biswas - 6 years, 3 months ago

I did it the same way

Abdur Rehman Zahid - 6 years, 7 months ago

rajdeep bhaiyua aap kis school mai padhte hai aap abhi bhi dps school mai padhte hai

Real Champ - 3 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...