A calculus problem by Ravneet Singh

Calculus Level 4

0 π / 2 sin ( 2017 x ) sin ( x ) d x = ? \large \int_0^{\pi /2} \frac{ \sin(2017x) }{\sin(x)} \, dx = \quad ?

π 3 \frac\pi3 π 2 \frac\pi2 π 6 \frac\pi6 π 4 \frac\pi4

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Shourya Pandey
May 31, 2017

Let I ( n ) = 0 π 2 sin ( ( 2 n 1 ) x ) sin x d x \displaystyle I(n) = \int_{0}^{\frac{\pi}{2}} \frac{\sin ((2n-1)x)}{\sin x}dx for all natural numbers n n .

I ( n + 1 ) I ( n ) = 0 π 2 sin ( ( 2 n + 1 ) x ) sin ( ( 2 n 1 ) x ) sin x d x = 0 π 2 2 cos 2 n x sin x sin x d x \displaystyle I(n+1) - I(n) = \int_{0}^{\frac{\pi}{2}} \frac{\sin ((2n+1)x) - \sin ((2n-1)x)}{\sin x}dx = \int_{0}^{\frac{\pi}{2}} \frac{2\cos{2nx}\sin x}{\sin x} dx

= 0 π 2 2 cos 2 n x = sin 2 n π 2 n sin 2 n 0 n = 0 \displaystyle = \int_{0}^{\frac{\pi}{2}} 2\cos{2nx} = \frac{\sin{2n\frac{\pi}{2}}}{n} - \frac{\sin{2n \cdot 0}}{n} = 0 .

It follows that 0 π 2 sin ( 2017 x ) sin x d x = I ( 1009 ) = I ( 1008 ) = . . . . = I ( 1 ) = 0 π 2 sin x sin x d x = π 2 \displaystyle \int_{0}^{\frac{\pi}{2}} \frac{\sin (2017x)}{\sin x}dx = I(1009) = I(1008) = .... = I(1) = \int_{0}^{\frac{\pi}{2}} \frac{\sin x}{\sin x}dx = \frac{\pi}{2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...