Converge or diverge

Calculus Level 3

True or False?

1 1 2 + 1 3 1 4 + 1 - \dfrac{1}{\sqrt 2} + \dfrac{1}{\sqrt 3} - \dfrac{1}{\sqrt 4} + \cdots

The series above diverges.

True False

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Zach Abueg
Jun 19, 2017

Recall the alternating series test for convergence :

If a n a_n decreases monotonically and lim n a n = 0 \displaystyle \lim_{n \ \to \ \infty} a_n = 0 , then n = k ( 1 ) n a n \displaystyle \sum_{n \ = \ k}^{\infty} \left(- 1\right)^na_n converges.

1 1 1 2 + 1 3 1 4 + = n = 1 ( 1 ) n + 1 n \displaystyle \begin{aligned} \frac{1}{\sqrt{1}} - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}} + \cdots = \sum_{n \ = \ 1}^{\infty} \frac{(- 1)^{n + 1}}{\sqrt{n}} \end{aligned}

Let a n = 1 n \displaystyle a_n = \frac{1}{\sqrt{n}} .

Condition 1: a n > a n + 1 a_n > a_{n + 1}

n < n + 1 n < n + 1 n 0 1 n > 1 n + 1 n 1 \displaystyle \begin{aligned} n & < n + 1 \\ \implies \sqrt{n} & < \sqrt{n + 1} & \small \color{#3D99F6} \forall \ n \geq 0 \\ \implies \frac{1}{\sqrt{n}} & > \frac{1}{\sqrt{n + 1}} & \small \color{#3D99F6} \forall \ n \geq 1 \end{aligned}

Condition 2: lim n a n = 0 \displaystyle \lim_{n \ \to \ \infty} a_n = 0

lim n 1 n = lim n 1 = 0 \displaystyle \lim_{n \ \to \ \infty} \frac{1}{\sqrt{n}} = \lim_{n \ \to \ \infty} \frac{1}{\infty} = 0

Since both conditions are satisfied, n = 1 ( 1 ) n + 1 n \displaystyle \sum_{n \ = \ 1}^{\infty} \frac{(- 1)^{n + 1}}{\sqrt{n}} converges by the alternating series test.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...