0 ∫ 1 1 − x 3 d x = A π B C D 1 [ Γ ( E 1 ) ] F
Find the smallest possible value of A + B + C + D + E + F
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Put x 3 = s i n 2 t 3 x 2 . d x = 2 . s i n t . c o s t . d t
and x 2 = s i n 3 4 t
Substituting this in the integral it becomes:
I = ∫ 0 2 π 3 s i n 4 / 3 t c o s t 2 s i n t c o s t d t = 3 2 ∫ 0 2 π s i n − 3 1 t d t = 3 1 × 2 ∫ 0 2 π s i n − 3 1 t c o s 0 t d t = 3 1 B ( 3 1 , 2 1 ) = 3 Γ ( 6 5 ) Γ ( 3 1 ) Γ ( 2 1 ) .
We know that :
(1) Γ ( z ) Γ ( 1 − z ) = s i n ( π z ) π
(2) Γ ( z ) Γ ( z + 1 / 2 ) = 2 1 − 2 z π Γ ( 2 z )
Putting z = 1 / 3 in the first equation : Γ ( 2 / 3 ) Γ ( 1 / 3 ) = π c o s e c ( π / 3 ) = 3 2 π )
Again putting z = 1 / 3 in the second equation:
Γ ( 1 / 3 ) Γ ( 5 / 6 ) = 2 1 / 3 π Γ ( 2 / 3 ) Γ ( 1 / 3 ) Γ ( 5 / 6 ) = 2 1 / 3 π × 3 Γ ( 1 / 3 ) 2 π Γ ( 5 / 6 ) = 3 Γ 2 ( 1 / 3 ) 2 1 / 3 π 2 π
Putting this value in the first equation:
I = 2 π 3 3 2 1 . Γ 3 ( 3 1 )
Problem Loading...
Note Loading...
Set Loading...
The substitution u = x 3 makes this integral I = ∫ 0 1 1 − x 3 d x = 3 1 ∫ 0 1 u − 3 2 ( 1 − u ) − 2 1 d u = 3 1 B ( 3 1 , 2 1 ) = 3 Γ ( 6 5 ) Γ ( 3 1 ) Γ ( 2 1 ) = 3 Γ ( 6 5 ) π Γ ( 3 1 ) But Γ ( 3 2 ) π c o s e c 3 1 π = Γ ( 3 1 ) Γ ( 3 2 ) Γ ( 6 5 ) 1 I = = = = 2 π 1 2 6 1 Γ ( 3 1 ) Γ ( 6 5 ) 2 π 1 2 6 1 Γ ( 3 1 ) 2 Γ ( 6 5 ) ( 2 π ) 2 3 Γ ( 3 1 ) 2 2 6 1 3 2 1 3 π × ( 2 π ) 2 3 Γ ( 3 1 ) 3 2 6 1 3 2 1 = 2 π 3 3 2 1 Γ ( 3 1 ) 3 making the answer 2 + 3 + 3 + 2 + 3 + 3 = 1 6 .