A calculus problem by Refaat M. Sayed

Calculus Level 5

0 1 d x 1 x 3 = 1 A π B D C [ Γ ( 1 E ) ] F \int \limits^{1}_{0}\frac{dx}{\sqrt{1-x^{3}} } =\frac{1}{A\pi \sqrt{B} \sqrt[C]{D} } \left[ \Gamma \left( \frac{1}{E} \right) \right] ^{F}

Find the smallest possible value of A + B + C + D + E + F A+B+C+D+E+F


Note that

  • A , B , C , D , E , F A, B, C, D, E, F are positive integers, And B , D B, D are square free


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Nov 23, 2016

The substitution u = x 3 u = x^3 makes this integral I = 0 1 d x 1 x 3 = 1 3 0 1 u 2 3 ( 1 u ) 1 2 d u = 1 3 B ( 1 3 , 1 2 ) = Γ ( 1 3 ) Γ ( 1 2 ) 3 Γ ( 5 6 ) = π Γ ( 1 3 ) 3 Γ ( 5 6 ) I \; = \; \int_0^1 \frac{dx}{\sqrt{1-x^3}} \; = \; \tfrac13 \int_0^1 u^{-\frac23}(1-u)^{-\frac12}\,du \; = \; \tfrac13B(\tfrac13,\tfrac12) \; = \; \frac{\Gamma(\tfrac13)\Gamma(\tfrac12)}{3\Gamma(\tfrac56)} \; = \; \frac{\sqrt{\pi}\Gamma(\tfrac13)}{3\Gamma(\tfrac56)} But Γ ( 2 3 ) = 1 2 π 2 1 6 Γ ( 1 3 ) Γ ( 5 6 ) π c o s e c 1 3 π = Γ ( 1 3 ) Γ ( 2 3 ) = 1 2 π 2 1 6 Γ ( 1 3 ) 2 Γ ( 5 6 ) 1 Γ ( 5 6 ) = Γ ( 1 3 ) 2 2 1 6 3 1 2 ( 2 π ) 3 2 I = π 3 × Γ ( 1 3 ) 3 2 1 6 3 1 2 ( 2 π ) 3 2 = 1 2 π 3 2 3 Γ ( 1 3 ) 3 \begin{array}{rcl} \Gamma(\tfrac23) & = & \displaystyle \frac{1}{\sqrt{2\pi}} 2^{\frac16} \Gamma(\tfrac13)\Gamma(\tfrac56) \\ \pi \mathrm{cosec}\tfrac13\pi \; = \; \Gamma(\tfrac13)\Gamma(\tfrac23) & = & \displaystyle \frac{1}{\sqrt{2\pi}} 2^{\frac16} \Gamma(\tfrac13)^2 \Gamma(\tfrac56) \\ \displaystyle \frac{1}{\Gamma(\tfrac56)} & = & \displaystyle \frac{\Gamma(\tfrac13)^2 2^{\frac16} 3^{\frac12}}{(2\pi)^{\frac32}} \\ I & = & \displaystyle \frac{\sqrt{\pi}}{3} \times \frac{\Gamma(\tfrac13)^3 2^{\frac16} 3^{\frac12}}{(2\pi)^{\frac32}} \; = \; \frac{1}{2\pi \sqrt{3} \sqrt[3]{2}} \Gamma(\tfrac13)^3 \end{array} making the answer 2 + 3 + 3 + 2 + 3 + 3 = 16 2+3+3+2+3+3 = \boxed{16} .

Kushal Bose
Nov 24, 2016

Put x 3 = s i n 2 t 3 x 2 . d x = 2. s i n t . c o s t . d t x^3=sin^2t \\ 3x^2. dx=2 .sin t. cos t. dt

and x 2 = s i n 4 3 t x^2=sin^{\frac{4}{3}}t

Substituting this in the integral it becomes:

I = 0 π 2 2 s i n t c o s t 3 s i n 4 / 3 t c o s t d t = 2 3 0 π 2 s i n 1 3 t d t = 1 3 × 2 0 π 2 s i n 1 3 t c o s 0 t d t = 1 3 B ( 1 3 , 1 2 ) = Γ ( 1 3 ) Γ ( 1 2 ) 3 Γ ( 5 6 ) . \displaystyle I=\int_{0}^{\frac{\pi}{2}} \dfrac{2\,sint\,cost}{3\,sin^{4/3}t\,cost} dt \\ =\displaystyle \frac{2}{3} \int_{0}^{\frac{\pi}{2}} sin^{-\frac{1}{3}}t dt \\ =\displaystyle \frac{1}{3} \times 2 \int_{0}^{\frac{\pi}{2}} sin^{-\frac{1}{3}}t \, cos^{0} t dt \\ =\displaystyle \frac{1}{3}B(\frac{1}{3},\frac{1}{2}) \\ =\displaystyle \frac{\Gamma(\frac{1}{3})\,\Gamma(\frac{1}{2})}{3\, \Gamma(\frac{5}{6})}.

We know that :

(1) Γ ( z ) Γ ( 1 z ) = π s i n ( π z ) \Gamma(z)\, \Gamma(1-z)=\dfrac{\pi}{sin(\pi z)}

(2) Γ ( z ) Γ ( z + 1 / 2 ) = 2 1 2 z π Γ ( 2 z ) \Gamma(z)\, \Gamma(z+1/2)= 2^{1-2z}\, \sqrt{\pi} \, \Gamma(2z)

Putting z = 1 / 3 z=1/3 in the first equation : Γ ( 2 / 3 ) Γ ( 1 / 3 ) = π c o s e c ( π / 3 ) = 2 π 3 ) \Gamma(2/3)\, \Gamma(1/3)=\pi \, cosec(\pi/3)=\frac{2\pi}{\sqrt{3}})

Again putting z = 1 / 3 z=1/3 in the second equation:

Γ ( 1 / 3 ) Γ ( 5 / 6 ) = 2 1 / 3 π Γ ( 2 / 3 ) Γ ( 1 / 3 ) Γ ( 5 / 6 ) = 2 1 / 3 π × 2 π 3 Γ ( 1 / 3 ) Γ ( 5 / 6 ) = 2 1 / 3 π 2 π 3 Γ 2 ( 1 / 3 ) \Gamma(1/3) \, \Gamma(5/6)=2^{1/3}\sqrt{\pi} \Gamma(2/3) \\ \Gamma(1/3) \, \Gamma(5/6)=2^{1/3}\sqrt{\pi} \times \dfrac{2\pi}{\sqrt{3} \, \Gamma(1/3)} \\ \Gamma(5/6)=\dfrac{2^{1/3}\,\sqrt{\pi}\,2\pi}{\sqrt{3}\, \Gamma^{2}(1/3)}

Putting this value in the first equation:

I = 1 2 π 3 2 3 . Γ 3 ( 1 3 ) I=\dfrac{1}{2\,\pi\,\sqrt{3}\,\sqrt[3]{2}}. \Gamma^{3}(\frac{1}{3})

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...