My Rearranging Limit

Calculus Level 3

lim n 1 2 ( n ) + 2 2 ( n 1 ) + 3 2 ( n 2 ) + + n 2 ( 1 ) 1 3 + 2 3 + 3 3 + + n 3 \large \displaystyle\lim_{n\to\infty}\dfrac{1^2(n)+2^2(n-1)+3^2(n-2)+\cdots+n^2(1)}{1^3+2^3+3^3+\cdots +n^3}

Evaluate the limit to 3 decimal places.


The answer is 0.333.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Let us denote the numerator by N \color{#D61F06}{\mathfrak{N}} .

N = k = 1 n k 2 ( n ( k 1 ) ) = n k = 1 n k 2 k = 1 n k 3 + k = 1 n k 2 \large \displaystyle \color{#D61F06}{{\mathfrak{N}}} = \sum_{k=1}^n k^2(n-(k-1)) = n\sum_{k=1}^n k^2 - \sum_{k=1}^n k^3+\sum_{k=1}^n k^2

N = 1 6 n 2 ( n + 1 ) ( 2 n + 1 ) n 2 ( n + 1 ) 2 4 + 1 6 n ( n + 1 ) ( 2 n + 1 ) \large\color{#D61F06}{\mathfrak{N}} = \frac{1}{6}n^2(n+1)(2n+1) - \frac{n^2(n+1)^2}{4} + \frac{1}{6}n(n+1)(2n+1)

T = lim n 1 2 n + 2 2 ( n 1 ) + 3 2 ( n 2 ) + + n 2 1 1 3 + 2 3 + 3 3 + + n 3 = α φ \large \mathfrak{T}=\displaystyle\lim_{n\to\infty}\dfrac{1^2n+2^2(n-1)+3^2(n-2)+\cdots+n^2\cdot 1}{1^3+2^3+3^3+\cdots +n^3}=\dfrac{\color{#D61F06}{\alpha}}{\color{#3D99F6}{\varphi}}

T = lim n N n 2 ( n + 1 ) 2 4 \displaystyle\large\implies\mathfrak{T} = \lim_{n\to\infty}\frac{\large \color{#D61F06}{{\mathfrak{N}}}}{\frac{n^2(n+1)^2}{4}}

We divide throughout by n 4 n^4

T = 4 lim n 1 6 n 2 ( n + 1 ) ( 2 n + 1 ) n 4 1 4 n 2 ( n + 1 ) 2 n 4 + 1 6 n ( n + 1 ) ( 2 n + 1 ) n 4 n 2 ( n + 1 ) 2 n 4 \displaystyle\large\implies \mathfrak{T} = 4\lim_{n\to\infty} \frac{\frac{1}{6}\frac{n^2(n+1)(2n+1)}{n^4} - \frac{1}{4}\frac{n^2(n+1)^2}{n^4} + \frac{1}{6}\frac{n(n+1)(2n+1)}{n^4} }{\frac{n^2(n+1)^2}{n^4}}

T = 4 lim n 1 6 n 2 n 2 ( 1 n + 1 ) ( 1 n + 2 ) n 2 ( 1 n + 1 ) 2 4 n 2 + 1 6 n n n ( 1 n + 1 ) ( 1 n + 2 ) n 2 ( 1 n + 1 ) 2 n 2 \displaystyle\large \implies \mathfrak{T} = 4\lim_{n\to\infty} \frac{\frac{1}{6}\frac{\cancel{n^2}}{\cancel{n^2}}(\frac{1}{n}+1)(\frac{1}{n}+2) - \frac{\cancel{n^2} (\frac{1}{n} + 1)^2}{4\cancel{n^2}} + \frac{1}{6n}\frac{\cancel{n}}{\cancel{n}}(\frac{1}{n}+1)(\frac{1}{n}+2)}{\frac{\cancel{n^2} (\frac{1}{n} + 1)^2}{\cancel{n^2}} }

Applying Limit The last expression in the numerator turns zero as the power of n n is less than 4. , so

T = 4 2 6 1 4 1 2 = 1 3 = 0.333 \displaystyle\large \mathfrak{T} = 4 \frac{\frac{2}{6}-\frac{1}{4}}{1^2}=\frac{\color{#D61F06}{\overbrace{1}}}{\color{#3D99F6}{\underbrace{3}}}=\boxed{0.333}

Exactly what I did. Cool solution! +1

Nihar Mahajan - 5 years, 2 months ago

Yep.. Nice (+1).. I knew someone would do my job and post the solution...

Rishabh Jain - 5 years, 2 months ago

Log in to reply

Ya it costs 100 $ :-P

Aditya Narayan Sharma - 5 years, 2 months ago

FYI There is not need to place everything in Latex. The sentences could be typed normally. I've edited the first sentence of your solution.

Calvin Lin Staff - 5 years, 2 months ago

Nice,

I learned something new (+1)

Syed Baqir - 5 years, 2 months ago

@Aditya Sharma The question has been edited (by I don't know whom) to decimal type question and the question is also edited .. So I think you should edit your third line and remove that α φ \frac{\alpha}{\varphi} thing. I also think your solution is also edited by a moderator... Isn't it??

Rishabh Jain - 5 years, 2 months ago

Log in to reply

I edited the problem to simplify it and to make it harder to guess what the answer is.

I edited the solution to remove the a + b a+b part. I think that the rest of the solution is fine.

Calvin Lin Staff - 5 years, 2 months ago

Log in to reply

Ohk... Nice

Rishabh Jain - 5 years, 2 months ago

The limit can be expressed as

lim n k = 1 n ( k 2 ( n k + 1 ) ) k = 1 n k 3 \lim_{n \to \infty} \dfrac{\sum_{k=1}^{n} (k^2(n-k+1))}{\sum_{k=1}^{n} k^3}

So we have,

lim n k = 1 n ( k 2 ( n k + 1 ) ) k = 1 n k 3 = lim n n k = 1 n k 2 k = 1 n k 3 + k = 1 n k 2 k = 1 n k 3 = lim n n k = 1 n k 2 k = 1 n k 3 + k = 1 n k 2 k = 1 n k 3 ÷ n 4 n 4 = lim n 1 n k = 1 n ( k n ) 2 1 n k = 1 n ( k n ) 3 + 1 n 2 k = 1 n ( k n ) 2 1 n k = 1 n ( k n ) 3 = 0 1 x 2 d x 0 1 x 3 d x + 0 0 1 x 3 d x = 1 3 \begin{aligned} \lim_{n \to \infty} \dfrac{\sum_{k=1}^{n} (k^2(n-k+1))}{\sum_{k=1}^{n} k^3} &=& \lim_{n \to \infty} \dfrac{n\sum_{k=1}^{n} k^2 - \sum_{k=1}^{n} k^3 + \sum_{k=1}^{n} k^2}{\sum_{k=1}^{n} k^3}\\ &=& \lim_{n \to \infty} \dfrac{n\sum_{k=1}^{n} k^2 - \sum_{k=1}^{n} k^3 + \sum_{k=1}^{n} k^2}{\sum_{k=1}^{n} k^3} \div \dfrac{n^4}{n^4}\\ &=& \lim_{n \to \infty} \dfrac{\dfrac{1}{n}\sum_{k=1}^{n} \left(\dfrac{k}{n} \right)^2 - \dfrac{1}{n}\sum_{k=1}^{n} \left(\dfrac{k}{n} \right)^3 + \dfrac{1}{n^2}\sum_{k=1}^{n} \left( \dfrac{k}{n}\right)^2}{\dfrac{1}{n}\sum_{k=1}^{n} \left(\dfrac{k}{n} \right)^3}\\ &=& \dfrac{\int_{0}^{1} x^2 dx - \int_{0}^{1} x^3 dx + 0}{\int_{0}^{1} x^3 dx}\\ &=& \boxed{\dfrac{1}{3}} \end{aligned}

Did the same way... (+1).... I was waiting for someone to write a solution using Reimann Sums :-)

Rishabh Jain - 5 years, 2 months ago
Pi Han Goh
Apr 23, 2016

Relevant wiki: Stolz–Cesàro theorem

This problem can be solved using Stolz–cesàro theorem . Let a n a_n denote the numerator of the fraction given in the limit, similarly let b n b_n denote the numerator of the fraction given in the limit.

By Stolz-Cesaro theorem, if the following limit exists, then it is equal to the limit in question:

lim n a n + 1 a n b n + 1 b n . \lim_{n\to\infty} \dfrac{a_{n+1} - a_n}{b_{n+1} - b_n} \; .

In other words, if lim n a n + 1 a n b n + 1 b n = L \displaystyle \lim_{n\to\infty} \dfrac{a_{n+1} - a_n}{b_{n+1} - b_n} = \mathcal L for some finite L \mathcal L , then lim n a n b n = L \displaystyle \lim_{n\to\infty} \dfrac{a_n}{ b_n} = \mathcal L .

We know that b n = k = 1 n k 3 b n + 1 b n = ( k + 1 ) 3 \displaystyle b_n = \sum_{k=1}^n k ^3\Rightarrow b_{n+1} - b_n = (k+1)^3 , and

a n = 1 2 ( n ) + 2 2 ( n 1 ) + 3 2 ( n 2 ) + + n 2 ( 1 ) a n + 1 = 1 2 ( n + 1 ) + 2 2 ( n ) + 3 2 ( n 1 ) + n 2 ( 2 ) + ( n + 1 ) 2 ( 1 ) . \begin{aligned} && a_n = 1^2(n)+2^2(n-1)+3^2(n-2)+\cdots+n^2(1) \\ && \Leftrightarrow a_{n+1} = 1^2(n+1) + 2^2(n) + 3^2(n-1) + n^2(2) + (n+1)^2 (1) \; . \end{aligned}

So a n + 1 a n = 1 2 + 2 2 + 3 2 + + n 2 + ( n + 1 ) 2 a_{n+1} - a_n = 1^2 + 2^2 + 3^2 + \cdots + n^2 + (n+1)^2 , thus

lim n a n + 1 a n b n + 1 b n = lim n 1 2 + 2 2 + 3 2 + + ( n + 1 ) 2 ( n + 1 ) 3 = lim n 1 2 + 2 2 + 3 2 + + n 2 n 3 = lim n 1 n j = 1 n ( j n ) 2 = 0 1 x 2 d x = 1 3 . \begin{aligned} \lim_{n\to\infty} \dfrac{a_{n+1} - a_n}{b_{n+1} - b_n} &=& \lim_{n\to\infty} \dfrac{1^2+2^2+3^2+ \cdots + (n+1)^2}{(n+1)^3} \\ &= & \lim_{n\to\infty} \dfrac{1^2+2^2+3^2+ \cdots + n^2}{n^3} \\ &= & \lim_{n\to\infty} \dfrac1n\sum_{j=1}^n \left( \dfrac jn \right)^2 \\ &= & \int_0^1 x^2 \, dx = \dfrac13 \; . \end{aligned}

Since the limit exists, then so is the limit in question. Hence our answer is 1 3 \boxed{\dfrac13} .

L = lim n 1 2 ( n ) + 2 2 ( n 1 ) + 3 2 ( n 2 ) + . . . + n 2 ( 1 ) 1 3 + 2 3 + 3 3 + . . . + n 3 = lim n k = 1 n k 2 ( n + 1 k ) k = 1 n k 3 = lim n ( n + 1 ) k = 1 n k 2 k = 1 n k 3 ) k = 1 n k 3 = lim n ( n + 1 ) k = 1 n k 2 k = 1 n k 3 1 = lim n ( n + 1 ) n ( n + 1 ) ( 2 n + 1 ) 6 n 2 ( n + 1 ) 2 4 1 = lim n 4 ( 2 n + 1 ) 6 n 1 = lim n 2 ( 2 + 1 n ) 3 1 = 4 3 1 = 1 3 0.333 \begin{aligned} L & = \lim_{n \to \infty} \frac {1^2(n)+2^2(n-1)+3^2(n-2)+...+n2(1)}{1^3+2^3+3^3+...+n^3} \\ & = \lim_{n \to \infty} \frac {\sum_{k=1}^n k^2(n+1-k)}{\sum_{k=1}^n k^3} \\ & = \lim_{n \to \infty} \frac {(n+1)\sum_{k=1}^n k^2 - \sum_{k=1}^n k^3 )}{\sum_{k=1}^n k^3} \\ & = \lim_{n \to \infty} \frac {(n+1)\sum_{k=1}^n k^2}{\sum_{k=1}^n k^3} - 1 \\ & = \lim_{n \to \infty} \frac {(n+1)\cdot \frac {n(n+1)(2n+1)}6}{\frac {n^2(n+1)^2}4} - 1 \\ & = \lim_{n \to \infty} \frac {4(2n+1)}{6n} - 1 \\ & = \lim_{n \to \infty} \frac {2(2+\frac 1n)}3 - 1 \\ & = \frac 43 - 1 = \frac 13 \approx \boxed{0.333} \end{aligned}

Where did you find this question as it was posted way back!! Btw (+1).

Rishabh Jain - 4 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...