Integration (5)

Calculus Level 2

0 π t sin 3 t d t \large \int_0^\pi t \sin^3 t \, dt

If the value of the integral above is equal to A B π \dfrac AB \pi , find B A \dfrac BA .


The answer is 1.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
Sep 24, 2020

Using the identity sin 3 ( t ) = 3 sin ( t ) sin ( 3 t ) 4 \sin^{3}(t) = \frac{3\sin(t) - \sin(3t)}{4} , we can perform integration-by-parts according to:

0 π t ( 3 sin ( t ) sin ( 3 t ) 4 ) d t ; \int_{0}^{\pi} t(\frac{3\sin(t) - \sin(3t)}{4}) dt;

or 3 4 0 π t sin ( t ) d t 1 4 0 π t sin ( 3 t ) d t ; \frac{3}{4} \int_{0}^{\pi} t \sin(t) dt - \frac{1}{4}\int_{0}^{\pi} t \sin(3t) dt;

or 3 4 [ t cos ( t ) + cos ( t ) d t ] + 1 4 [ t cos ( 3 t ) 3 cos ( 3 t ) 3 ] d t \frac{3}{4}[-t \cos(t) + \int \cos(t) dt] + \frac{1}{4}[\frac{t \cos(3t)}{3} - \int \frac{\cos(3t)}{3}] dt ;

or 3 4 [ t cos ( t ) + sin ( t ) ] + 1 4 [ t cos ( 3 t ) 3 sin ( 3 t ) 9 ] 0 π ; \frac{3}{4}[-t \cos(t) + \sin(t)] + \frac{1}{4}[\frac{t \cos(3t)}{3} - \frac{\sin(3t)}{9}]|_{0}^{\pi};

or 3 π 4 π 12 = 2 π 3 A = 2 , B = 3 \frac{3\pi}{4} - \frac{\pi}{12} = \frac{2\pi}{3} \Rightarrow A = 2, B = 3 ;

or B A = 3 2 . \frac{B}{A} = \boxed{\frac{3}{2}}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...