A calculus problem by Rocco Dalto

Calculus Level pending

Let K {\bf K } be a positive integer and X > 1 {\bf X > 1}

I f If N = 1 N K X N {\bf \sum_{N = 1}^{\infty} \frac{N^K}{X^N} } = = J = 0 K 1 b K J X K J ( X 1 ) K + 1 {\bf \frac{\sum _{J = 0}^{K - 1} b_{K - J} * X^{K - J}}{(X - 1)^{K + 1} } }

where b 1 = b K = 1 {\bf b_{1} = b_{K} = 1} and each constant b i \bf b_{i} where ( 2 < = i < = K 1 ) {\bf (2 <= i <= K - 1) } is a positive integer

t h e n then

N = 1 N K + 1 X N {\bf \sum_{N = 1}^{\infty} \frac{N^{K + 1}}{X^N} } = = X K + 1 + ( J = 0 K 2 ( ( K J ) b K J + ( J + 2 ) b K J 1 ) X K J ) + X ( X 1 ) K + 2 {\bf \frac{X^{K + 1} + (\sum_{J = 0}^{K - 2} ((K - J) * b_{K - J} + (J + 2) * b_{K - J - 1}) * X^{K - J}) + X}{(X - 1)^{K + 2}} }

False True

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Sep 9, 2016

Let K {\bf K } be a positive integer.

Replace X X by 1 X \frac{1}{X} in N = 1 N K X N {\bf \sum_{N = 1}^{\infty} \frac{N^K}{X^N} } = = J = 0 K 1 b K J X K J ( X 1 ) K + 1 {\bf \frac{\sum _{J = 0}^{K - 1} b_{K - J} * X^{K - J}}{(X - 1)^{K + 1} } } \implies

N = 1 N K X N {\bf \sum_{N = 1}^{\infty} N^K * X^N } = = J = 0 K 1 b K J X J + 1 ( 1 X ) K + 1 {\bf \frac{\sum_{J = 0}^{K - 1} b_{K - J} * X^{J + 1}}{(1 - X)^{K + 1}} }

d / d x ( N = 1 N K X N ) {\bf d/dx(\sum_{N = 1}^{\infty} N^K * X^N) } = = J = 0 K 1 ( J + 1 ) b K J X J J = 0 K 1 ( J + 1 ) b K J X J + 1 + ( K + 1 ) J = 0 K 1 b K J X J + 1 ( 1 X ) K + 2 {\bf \frac{\sum_{J = 0}^{K - 1} (J + 1) * b_{K - J} * X^J - \sum_{J = 0}^{K - 1} (J + 1) * b_{K - J} * X^{J + 1} + (K + 1) * \sum_{J = 0}^{K - 1} b_{K - J} * X^{J + 1} } {(1 - X)^{K + 2}} } = =

[ b K + ( K b K + 2 b K 1 ) X + ( ( K 1 ) b K 1 + 3 b K 2 ) X 2 + . . . + {\bf [ b_{K} + (K * b_{K} + 2 * b_{K - 1}) * X + ((K - 1) * b_{K - 1} + 3 * b_{K - 2}) * X^2 + ... + }

( ( K J ) b K J + ( J + 2 ) b K J 1 ) X J + 1 + . . . + ( 2 b 2 + K b 1 ) X K 1 + b 1 X K ] {\bf ((K - J) * b_{K - J} + (J + 2) * b_{K - J - 1}) * X^{J + 1} + ... + (2 * b_{2} + K * b_{1}) * X^{K - 1} + b_{1} * X^K ] } / ( 1 X ) K + 2 {\bf /(1 - X)^{K + 2} } = = b K + ( J = 0 K 2 ( ( K J ) b K J + ( J + 2 ) b K j 1 ) X J + 1 ) + b 1 X K ( 1 X ) K + 2 {\bf \frac{b_{K} + (\sum_{J = 0}^{K - 2} ((K - J) * b_{K - J} + (J + 2) * b_{K - j - 1}) * X^{J + 1}) + b_{1} * X^K}{(1 - X)^{K + 2}} } \implies

N = 1 N K + 1 X N {\bf \sum_{N = 1}^{\infty} N^{K + 1} * X^N } = = b K X + ( J = 0 K 2 ( ( K J ) b K J + ( J + 2 ) b K j 1 ) X J + 2 ) + b 1 X K + 1 ( 1 X ) K + 2 {\bf \frac{b_{K} * X + (\sum_{J = 0}^{K - 2} ((K - J) * b_{K - J} + (J + 2) * b_{K - j - 1}) * X^{J + 2}) + b_{1} * X^{K + 1}}{(1 - X)^{K + 2}} }

Replacing X X by 1 X \frac{1}{X} \implies

N = 1 N K + 1 X N {\bf \sum_{N = 1}^{\infty} \frac{N^{K + 1}}{X^N} } = = X K + 1 + ( J = 0 K 2 ( ( K J ) b K J + ( J + 2 ) b K J 1 ) X K J ) + X ( X 1 ) K + 2 {\bf \frac{X^{K + 1} + (\sum_{J = 0}^{K - 2} ((K - J) * b_{K - J} + (J + 2) * b_{K - J - 1}) * X^{K - J}) + X}{(X - 1)^{K + 2}} }

What are b1, b2 , b3, ... , bk? Are they constants? How do we determine these values?

Pi Han Goh - 4 years, 9 months ago

Log in to reply

Each constant b i {\bf b_{i} } where ( 2 < = i < = K 1 ) {\bf (2 <= i <= K - 1) } is a positive integer and b 1 = b K = 1 . {\bf b_{1} =b_{K} = 1 }.

Given N = 1 N K X N {\bf \sum_{N = 1}^{\infty} \frac{N^K}{X^N} } = = J = 0 K 1 b K J X K J ( X 1 ) K + 1 {\bf \frac{\sum _{J = 0}^{K - 1} b_{K - J} * X^{K - J}}{(X - 1)^{K + 1} } } , you want to obtain the next summation N = 1 N K + 1 X N {\bf \sum_{N = 1}^{\infty} \frac{N^{K + 1}}{X^N} } in terms of these constants.

For instance, if you derived N = 1 N 3 X N = X 3 + 4 X 2 + X ( X 1 ) 4 \sum_{N=1}^\infty \dfrac{N^3}{X^N} = \frac{X^3 + 4X^2 + X}{(X - 1)^4} ,
then using the next summation above we obtain: N = 1 N 4 X N \sum_{N=1}^\infty \frac{N^4}{X^N} = X 4 + 11 X 3 + 11 X 2 + X ( X 1 ) 5 . = \frac{X^4 + 11X^3 + 11X^2 + X}{(X - 1)^5}.

Starting with N = 1 N X N \sum_{N = 1}^{\infty} \frac{N}{X^N} = = X ( X 1 ) 2 \frac{X}{(X - 1)^2} we can obtain each next summation using the above.

Rocco Dalto - 4 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...