A calculus problem by Russel Ryan Floresca

Calculus Level 3

Find the length of the curve y = 4 5 x 5 / 4 y = \dfrac45 x^{5/4} from x = 0 x=0 to x = 9 x=9 .

Round your answer to 3 decimal places.


The answer is 15.467.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Harsh Khatri
Feb 3, 2016

Length of curve

= ( ( d x ) 2 + ( d y ) 2 ) \displaystyle =\int \Big( \sqrt{(dx)^2 +(dy)^2} \Big)

= 0 9 ( ( d x ) 2 + ( 4 5 × 5 4 × x 1 4 d x ) 2 ) \displaystyle =\int_{0}^9 \Bigg( \sqrt{\Big( dx \Big)^2 + \Big( \frac{4}{5} \times \frac{5}{4} \times x^{\frac{1}{4}} dx \Big) ^2} \Bigg)

= 0 9 ( 1 + x ) d x \displaystyle =\int_{0}^9 \Big( \sqrt{1+\sqrt{x}} \Big) dx

Substituting x = tan 4 θ \displaystyle x = \tan^4\theta :

= 0 π 3 1 + tan 2 θ 4 tan 3 θ sec 2 θ d θ \displaystyle =\int_{0}^\frac{\pi}{3} \sqrt{1+\tan^2\theta}\cdot 4\tan^3\theta\sec^2\theta d\theta

= 4 0 π 3 ( sec 2 θ 1 ) sec 2 θ sec θ tan θ d θ \displaystyle =4 \int_{0}^\frac{\pi}{3} (\sec^2\theta - 1)\sec^2\theta \cdot \sec\theta \tan\theta d\theta

= 4 0 π 3 ( sec 4 θ sec 2 θ ) sec θ tan θ d θ \displaystyle =4\int_{0}^\frac{\pi}{3} (\sec^4\theta - \sec^2\theta) \cdot \sec\theta \tan\theta d\theta

= 4 ( ( sec 5 ( π 3 ) sec 5 ( 0 ) 5 ) ( sec 3 ( π 3 ) sec 3 ( 0 ) 3 ) ) \displaystyle = 4\Bigg( \Big( \frac{ \sec^5( \frac{ \pi}{3}) - \sec^5(0)}{5} \Big) - \Big( \frac{ \sec^3( \frac{ \pi}{3}) - \sec^3(0)}{3} \Big) \Bigg)

= 232 15 \displaystyle = \frac{232}{15}

15.467 \displaystyle \approx \boxed{15.467}

@Calvin Lin sir, can you edit my problem sir? I can't use LATEX at the moment. Sorry for the quality and the size. Thanks in advance!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...