A calculus problem by Sabelo Sibeko

Calculus Level 1

None of the above All of the above -2t^3 /(t^2 - 1)^3 1/(t-2)^2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Michael Huang
Dec 1, 2016

The second derivative of parametric equations is d 2 y d x 2 = d x d t d 2 y d t 2 d y d t d 2 x d t 2 ( d x d t ) 3 \frac{d^2y}{dx^2} = \frac{\frac{dx}{dt}\frac{d^2y}{dt^2} - \frac{dy}{dt}\frac{d^2x}{dt^2}}{(\frac{dx}{dt})^3}

For d x d t \color{#20A900}\dfrac{dx}{dt} and d 2 x d t 2 \color{#3D99F6}\dfrac{d^2x}{dt^2} , d x d t = 1 1 t 2 d 2 x d t 2 = 2 t 3 \begin{array}{rl} {\color{#20A900}\dfrac{dx}{dt}} &= 1 - \dfrac{1}{t^2}\\ {\color{#3D99F6}\dfrac{d^2x}{dt^2}} &= \dfrac{2}{t^3} \end{array} For d y d t \color{#D61F06}\dfrac{dy}{dt} and d 2 y d t 2 \color{#69047E}\dfrac{d^2y}{dt^2} , d y d t = 1 d 2 y d t 2 = 0 \begin{array}{rl} {\color{#D61F06}\dfrac{dy}{dt}} &= 1\\ {\color{#69047E}\dfrac{d^2y}{dt^2}} &= 0 \end{array} Thus, \begin{array}{rl} \dfrac{d^2y}{dx^2} &= \dfrac{{\color{#20A900}\dfrac{dx}{dt}}{\color{#69047E}\dfrac{d^2y}{dt^2}} - {\color{#3D99F6}\dfrac{d^2x}{dt^2}}{\color{#D61F06}\dfrac{dy}{dt}}}{\left({\color{#20A900}\dfrac{dx}{dt}}\right)^3}\\ &= \dfrac{\left(\color{#20A900}1 - \dfrac{1}{t^2}\right)\left({\color{#69047E}0}\right) - \left(\color{#3D99F6}\dfrac{2}{t^3}\right)\left(\color{#D61F06}1\right)}{\left({\color{#20A900}1 - \dfrac{1}{t^2}}\right)^3}\\ &= \dfrac{-\dfrac{2}{t^3}}{\left(1 - \dfrac{1}{t^2}\right)^3} \cdot \underbrace{\dfrac{\left(t^2\right)^3}{\left(t^2\right)^3}}_{\substack{\text{Multiply top} \\ \text{and bottom} \\ \text{by }\left(t^2\right)^3}}\\ &= \boxed{\dfrac{-2t^3}{\left(t^2 - 1\right)^3}} \end{array}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...