Floor function

Calculus Level 4

L = lim x 0 tan 1 x x \large L = \lim_{x\to0} \left \lfloor \dfrac{ \tan^{-1} x} x \right \rfloor

Find the value of L L .

Notation : \lfloor \cdot \rfloor denotes the floor function .

Limit does not exist \infty 1 1 0 0 None of these choices

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
May 23, 2016

L = lim x 0 tan 1 x x Using Maclaurin series = lim x 0 x x 3 3 + x 5 5 x 7 7 + . . . x = lim x 0 1 x 2 3 + x 4 5 x 6 7 + . . . \begin{aligned} L & = \lim_{x \to 0} \left \lfloor \frac{\color{#3D99F6}{\tan^{-1} x}}{x} \right \rfloor \quad \quad \small \color{#3D99F6}{\text{Using Maclaurin series}} \\ & = \lim_{x \to 0} \left \lfloor \frac{\color{#3D99F6}{x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + ... }}{x} \right \rfloor \\ & = \lim_{x \to 0} \left \lfloor \color{#3D99F6}{1 - \frac{x^2}{3} + \frac{x^4}{5} - \frac{x^6}{7} + ... } \right \rfloor \end{aligned}

Since \(\begin{equation} \begin{split} \end{split} \color{blue}{ p(x) = 1 - \frac{x^2}{3} + \frac{x^4}{5} - \frac{x^6}{7} + ... } \end{equation} \) is even, lim x 0 + p ( x ) = lim x 0 p ( x ) = L \displaystyle \implies \lim_{x \to 0^+} \lfloor p(x) \rfloor = \lim_{x \to 0^-} \lfloor p(x) \rfloor = L , the limit exists, and:

L = lim x 0 1 x 2 3 + x 4 5 x 6 7 + . . . Since p ( x ) < 1 = 0 \begin{aligned} L & = \lim_{x \to 0} \left \lfloor \color{#3D99F6}{1 - \frac{x^2}{3} + \frac{x^4}{5} - \frac{x^6}{7} + ... } \right \rfloor \quad \quad \small \color{#3D99F6}{\text{Since } p(x) < 1} \\ & = \boxed{0} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...