Zero solvers challenge

Calculus Level 5

f ( x ) = x 4 e x \large f(x) = x^4 e^{x}

If the 10 0 th 100^\text{th} derivative of f ( x ) f(x) at x = 1 x=1 is equal to k e k e for some positive integer k k , find k k .

Notation: e 2.71828 e \approx 2.71828 denotes the Euler's number .

Part 2


The answer is 98050001.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Brian Moehring
Mar 23, 2017

For the ease of notation, write g ( x ) = 1 e f ( x + 1 ) = 1 e ( x + 1 ) 4 e x + 1 = ( x + 1 ) 4 e x g(x) = \frac{1}{e}f(x+1) = \frac{1}{e}(x+1)^4e^{x+1} = (x+1)^4e^x so that g ( 100 ) ( 0 ) = 1 e f ( 100 ) ( 1 ) = 1 e ( k e ) = k . g^{(100)}(0) = \frac{1}{e}f^{(100)}(1) = \frac{1}{e}(ke) = k.

We may find this using the Maclaurin series for g ( x ) g(x) , which in this case may be interpreted as the exponential generating function for derivatives of the form g ( n ) ( 0 ) g^{(n)}(0) . Toward this, g ( x ) = ( x + 1 ) 4 e x = ( x 4 + 4 x 3 + 6 x 2 + 4 x + 1 ) n = 0 1 n ! x n = n = 0 1 n ! x n + 4 + n = 0 4 n ! x n + 3 + n = 0 6 n ! x n + 2 + n = 0 4 n ! x n + 1 + n = 0 1 n ! x n = P 3 ( x ) + n = 4 ( 1 ( n 4 ) ! + 4 ( n 3 ) ! + 6 ( n 2 ) ! + 4 ( n 1 ) ! + 1 n ! ) x n P 3 ( x ) is a polynomial of degree 3 = P 3 ( x ) + n = 4 1 n ! ( n ( n 1 ) ( n 2 ) ( n 3 ) + 4 n ( n 1 ) ( n 2 ) + 6 n ( n 1 ) + 4 n + 1 ) x n \begin{aligned} g(x) &= (x+1)^4 e^x \\ &= (x^4 + 4x^3 + 6x^2 + 4x + 1)\sum_{n=0}^\infty \frac{1}{n!}x^n \\ &= \sum_{n=0}^\infty \frac{1}{n!} x^{n+4} + \sum_{n=0}^\infty \frac{4}{n!} x^{n+3} + \sum_{n=0}^\infty \frac{6}{n!} x^{n+2} + \sum_{n=0}^\infty \frac{4}{n!} x^{n+1} + \sum_{n=0}^\infty \frac{1}{n!} x^n \\ &= P_3(x) + \sum_{n=4}^\infty \left(\frac{1}{(n-4)!} + \frac{4}{(n-3)!} + \frac{6}{(n-2)!} + \frac{4}{(n-1)!} + \frac{1}{n!}\right) x^n \qquad P_3(x) \text{ is a polynomial of degree } \leq 3 \\ &= P_3(x) + \sum_{n=4}^\infty \frac{1}{n!} \left(n(n-1)(n-2)(n-3) + 4n(n-1)(n-2) + 6n(n-1) + 4n + 1\right) x^n \end{aligned} Therefore, k = g ( 100 ) ( 0 ) = 100 ( 99 ) ( 98 ) ( 97 ) + 4 ( 100 ) ( 99 ) ( 98 ) + 6 ( 100 ) ( 99 ) + 4 ( 100 ) + 1 = 98050001 \begin{aligned} k &= g^{(100)}(0) \\ &= 100(99)(98)(97) + 4(100)(99)(98) + 6(100)(99) + 4(100) + 1 \\ &= \boxed{98050001} \end{aligned}

Very nice solution sir. I did a lengthier procedure by writing the Taylor series of the given function itself about the point 1 and then evaluated. What you have done is ingenious

Anirudh Chandramouli - 4 years, 2 months ago

I lost the challenge :P

Sabhrant Sachan - 4 years, 2 months ago

Whoa! Ingenious solution! I did the long way :(

Sumanth R Hegde - 4 years, 2 months ago

Can you elaborate getting to P n 3 P\sub{n}3 ?

Vishal Yadav - 4 years, 2 months ago

Log in to reply

When we add n = 0 1 n ! x n + 4 + n = 0 4 n ! x n + 3 + n = 0 6 n ! x n + 2 + n = 0 4 n ! x n + 1 + n = 0 1 n ! x n \sum_{n=0}^\infty \frac{1}{n!} x^{n+4} + \sum_{n=0}^\infty \frac{4}{n!} x^{n+3} + \sum_{n=0}^\infty \frac{6}{n!} x^{n+2} + \sum_{n=0}^\infty \frac{4}{n!} x^{n+1} + \sum_{n=0}^\infty \frac{1}{n!} x^n you first reindex the sums as n = 4 1 ( n 4 ) ! x n + n = 3 4 ( n 3 ) ! x n + n = 2 6 ( n 2 ) ! x n + n = 1 4 ( n 1 ) ! x n + n = 0 1 n ! x n \sum_{n=4}^\infty \frac{1}{(n-4)!} x^n + \sum_{n=3}^\infty \frac{4}{(n-3)!} x^n + \sum_{n=2}^\infty \frac{6}{(n-2)!} x^n + \sum_{n=1}^\infty \frac{4}{(n-1)!} x^n + \sum_{n=0}^\infty \frac{1}{n!} x^n and then take out all the terms with index n = 0 , 1 , 2 , 3 n=0,1,2,3 in order to write all the sums starting at n = 4 n=4 (in order to combine them into a single sum). The sum of the terms with index n = 0 , 1 , 2 , 3 n=0,1,2,3 and across all the sums is a polynomial whose degree is at most 3 3 , but whose coefficients are unnecessary in the given problem, so I just collected them as a polynomial I called " P 3 P_3 ".

Brian Moehring - 4 years, 2 months ago

Log in to reply

Powers like x ( n + 4 ) , x ( n + 3 ) , x ( n + 2 ) a n d x n x^(n+4) , x^(n+3) , x^(n+2) and x^n all changing to x n x^n was amazing me..Thanks

Vishal Yadav - 4 years, 2 months ago
Tapas Mazumdar
Mar 24, 2017

Let's write down the first few derivatives of f ( x ) f(x)

f ( 1 ) ( x ) = x 4 e x + 4 x 3 e x 1 time f ( 2 ) ( x ) = x 4 e x + 4 x 3 e x + 4 x 3 e x 2 times + 12 x 2 e x 1 time f ( 3 ) ( x ) = x 4 e x + 4 x 3 e x + 4 x 3 e x + 4 x 3 e x 3 times + 12 x 2 e x + 12 x 2 e x + 12 x 2 e x 3 times + 24 x e x 1 time f ( 4 ) ( x ) = x 4 e x + 4 x 3 e x + + 4 x 3 e x 4 times + 12 x 2 e x + + 12 x 2 e x 6 times + 24 x e x + + 24 x e x 4 times + 24 e x 1 time f ( 5 ) ( x ) = x 4 e x + 4 x 3 e x + + 4 x 3 e x 5 times + 12 x 2 e x + + 12 x 2 e x 10 times + 24 x e x + + 24 x e x 10 times + 24 e x + + 24 e x 5 times f^{(1)} (x) = x^4 e^x + \underbrace{4x^3 e^x}_{1 \text{ time}} \\ \\ f^{(2)} (x) = x^4 e^x + \underbrace{4x^3 e^x + 4x^3 e^x}_{2 \text{ times}} + \underbrace{12x^2 e^x}_{1 \text{ time}} \\ \\ f^{(3)} (x) = x^4 e^x + \underbrace{4x^3 e^x + 4x^3 e^x + 4x^3 e^x}_{3 \text{ times}} + \underbrace{12x^2 e^x + 12x^2 e^x + 12x^2 e^x}_{3 \text{ times}} + \underbrace{24x e^x}_{1 \text{ time}} \\ \\ f^{(4)} (x) = x^4 e^x + \underbrace{4x^3 e^x + \cdots + 4x^3 e^x}_{4 \text{ times}} + \underbrace{12x^2 e^x + \cdots + 12x^2 e^x}_{6 \text{ times}} + \underbrace{24x e^x + \cdots + 24x e^x}_{4 \text{ times}} + \underbrace{24 e^x}_{1 \text{ time}} \\ \\ f^{(5)} (x) = x^4 e^x + \underbrace{4x^3 e^x + \cdots + 4x^3 e^x}_{5 \text{ times}} + \underbrace{12x^2 e^x + \cdots + 12x^2 e^x}_{10 \text{ times}} + \underbrace{24x e^x + \cdots + 24x e^x}_{10 \text{ times}} + \underbrace{24 e^x + \cdots + 24 e^x}_{5 \text{ times}}

Here, we observe the following pattern for the number of times each term appears in the n th n^{\text{th}} derivative of f ( x ) f(x) :

  • x 4 e x x^4 e^x : only once n \forall \ n .

  • 4 x 3 e x 4x^3 e^x : n n times n \forall \ n .

  • 12 x 2 e x : { ( n 2 ) for n 2 0 otherwise 12x^2 e^x : \begin{cases} \dbinom n2 & \text{ for } n \ge 2 \\ 0 & \text{ otherwise } \end{cases}

  • 24 x e x : { ( n 3 ) for n 3 0 otherwise 24x e^x : \begin{cases} \dbinom n3 & \text{ for } n \ge 3 \\ 0 & \text{ otherwise } \end{cases}

  • 24 e x : { ( n 4 ) for n 4 0 otherwise 24 e^x : \begin{cases} \dbinom n4 & \text{ for } n \ge 4 \\ 0 & \text{ otherwise } \end{cases}

Thus for f ( 100 ) ( x ) f^{(100)} (x) , we have

f ( 100 ) ( x ) = x 4 e x + 100 ( 4 x 3 e x ) + ( 100 2 ) ( 12 x 2 e x ) + ( 100 3 ) ( 24 x e x ) + ( 100 4 ) ( 24 e x ) f^{(100)} (x) = x^4 e^x + 100 \left( 4x^3 e^x \right) + \dbinom{100}{2} \left( 12x^2 e^x \right) + \dbinom{100}{3} \left( 24x e^x \right) + \dbinom{100}{4} \left( 24 e^x \right)

At x = 1 x=1 , we have

f ( 100 ) ( 1 ) = e + 100 ( 4 e ) + ( 100 2 ) ( 12 e ) + ( 100 3 ) ( 24 e ) + ( 100 4 ) ( 24 e ) = e + 400 e + 59400 e + 3880800 e + 94109400 e = 98050001 e \begin{aligned} f^{(100)} (1) &= e + 100 \left( 4e \right) + \dbinom{100}{2} \left( 12e \right) + \dbinom{100}{3} \left( 24e \right) + \dbinom{100}{4} \left( 24e \right) \\ &= e + 400 e + 59400 e + 3880800 e + 94109400 e \\ &= \boxed{98050001 e} \end{aligned}


Notations: ( M N ) = M ! N ! ( M N ) ! \dbinom MN = \dfrac {M!}{N! (M-N)!} denotes the binomial coefficient .

Ceesay Muhammed
Apr 4, 2017

L E I B N I T Z T H E O R E M LEIBNITZ ------ THEOREM

N t h Nth differential of a product of two functions

If y = u v y=uv ; where u u and v v are functions of x x , then

y n y_n = i = 1 n ( n i ) = \sum_{i=1}^{n} \binom{n}{i} u n u_n v n i v_{n-i}

Where the subscript n n denotes the n t h nth derivative

S o u r c e Source : Further Engineering Mathematics By K. A. Stroud

Programme 5 : Power Series Solution Of Differential Equations.

I did it the same way 😃

Sabhrant Sachan - 4 years, 2 months ago

So my solution is a consequence of the Leibniz Theorem? I did not know about such a theorem before you mentioned about this in your solution, I just found this interesting pattern (in my solution) after lengthy differentiation.

Tapas Mazumdar - 4 years, 2 months ago

Log in to reply

Yes, it is actually. And the "proof" of the theorem is pretty straightforward.

Ceesay Muhammed - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...