Zero solvers challenge 2

Calculus Level 5

f ( x ) = e x x 3 \large f(x) = \dfrac{e^{x}}{x^3}

If the 10 0 th 100^\text{th} derivative of f ( x ) f(x) at x = 1 x=1 is equal to k e 2 \dfrac{ke}{2} for some integer k k , find k k .

Notation: e 2.71828 e \approx 2.71828 denotes the Euler's number .

None of these \text{ None of these } r = 0 101 ( 101 r ) ( 1 ) r ( r + 2 ) ! \displaystyle\sum_{r=0}^{101} \dbinom{101}{r} (-1)^r(r+2)! r = 0 100 ( 100 r ) ( 1 ) r ( r + 4 ) ! \displaystyle\sum_{r=0}^{100} \dbinom{100}{r} (-1)^r(r+4)! 1 2 r = 0 100 ( 100 r ) ( 1 ) r ( r + 2 ) ! \dfrac{1}{2}\displaystyle\sum_{r=0}^{100} \dbinom{100}{r} (-1)^r(r+2)! r = 0 100 ( 100 r ) ( 1 ) r ( r + 2 ) ! \displaystyle\sum_{r=0}^{100} \dbinom{100}{r} (-1)^r(r+2)!

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Brian Moehring
Mar 27, 2017

Define g ( x ) = 2 e f ( x + 1 ) = 2 e e x + 1 ( x + 1 ) 3 = 2 ( x + 1 ) 3 e x g(x) = \frac{2}{e}f(x+1) = \frac{2}{e}\frac{e^{x+1}}{(x+1)^3} = \frac{2}{(x+1)^3}e^x and note that g ( 100 ) ( 0 ) = 2 e f ( 100 ) ( 1 ) = 2 e k e 2 = k . g^{(100)}(0) = \frac{2}{e}f^{(100)}(1) = \frac{2}{e}\cdot \frac{ke}{2} = k.

Then, using 2 ( x + 1 ) 3 = n = 0 ( 1 ) n ( n + 2 ) ( n + 1 ) x n e x = n = 0 1 n ! x n , \frac{2}{(x+1)^3} = \sum_{n=0}^\infty (-1)^n (n+2)(n+1)x^n \\ e^x = \sum_{n=0}^\infty \frac{1}{n!}x^n, we may write g ( x ) = ( n = 0 ( 1 ) n ( n + 2 ) ( n + 1 ) x n ) ( n = 0 1 n ! x n ) = n = 0 ( r = 0 n ( 1 ) r ( r + 2 ) ( r + 1 ) 1 ( n r ) ! ) x n = n = 0 1 n ! ( r = 0 n n ! r ! ( n r ) ! ( 1 ) r ( r + 2 ) ( r + 1 ) r ! ) x n = n = 0 1 n ! ( r = 0 n ( n r ) ( 1 ) r ( r + 2 ) ! ) x n \begin{aligned} g(x) &= \left(\sum_{n=0}^\infty (-1)^n (n+2)(n+1)x^n\right)\cdot \left(\sum_{n=0}^\infty \frac{1}{n!}x^n\right) \\ &= \sum_{n=0}^\infty \left(\sum_{r=0}^n (-1)^r (r+2)(r+1) \cdot \frac{1}{(n-r)!}\right)x^n \\ &= \sum_{n=0}^\infty \frac{1}{n!} \left(\sum_{r=0}^n \frac{n!}{r!(n-r)!} (-1)^r (r+2)(r+1)r!\right)x^n \\ &= \sum_{n=0}^\infty \frac{1}{n!} \left(\sum_{r=0}^n \binom{n}{r} (-1)^r (r+2)!\right)x^n \end{aligned}

Therefore, k = g ( 100 ) ( 0 ) = r = 0 100 ( 100 r ) ( 1 ) r ( r + 2 ) ! k = g^{(100)}(0) = \sum_{r=0}^{100} \binom{100}{r} (-1)^r (r+2)!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...