Inspired by Calvin Lin

Calculus Level 4

f ( x ) = ( ln x ) 2 \large f(x) = \left( \ln{x} \right)^2

Select the option which is closest to the 101st derivative of f ( x ) f(x) at x = 100 x=100 .

Notation: γ 0.5772 \gamma \approx 0.5772 denotes the Euler-Mascheroni constant .

2 100 ! γ 10 0 101 -2\cdot \dfrac{100! \gamma }{100^{101}} 2 100 ! γ 10 1 101 -2\cdot \dfrac{100! \gamma }{101^{101}} 2 101 ! γ 10 0 101 -2\cdot \dfrac{101! \gamma }{100^{101}} 2 100 ! γ 10 0 100 -2\cdot \dfrac{100! \gamma }{100^{100}}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Patrick Corn
Mar 14, 2018

Write g ( z ) = f ( 100 ( 1 + z ) ) . g(z) = f(100(1+z)). Then g ( 101 ) ( z ) = 10 0 101 f ( 101 ) ( 100 ( 1 + z ) ) g^{(101)}(z) = 100^{101}f^{(101)}(100(1+z)) by the Chain Rule, so g ( 101 ) ( 0 ) = 10 0 101 f ( 101 ) ( 100 ) . g^{(101)}(0) = 100^{101}f^{(101)}(100).

Now g ( z ) = ( ln ( 100 ( 1 + z ) ) ) 2 = ( ln ( 100 ) + ln ( 1 + z ) ) 2 , g(z) = (\ln(100(1+z)))^2 = (\ln(100) + \ln(1+z))^2, and we can expand the inside as a Taylor series around z = 0 z=0 : g ( z ) = ( ln ( 100 ) + z z 2 2 + z 3 3 + z 101 101 + ) 2 , g(z) = \left(\ln(100) + z - \frac{z^2}2 + \frac{z^3}3 - \cdots + \frac{z^{101}}{101} + \cdots\right)^2, so multiplying out, we get that the coefficient of z 101 z^{101} is 2 ln ( 100 ) 101 2 ( 1 1 100 + 1 2 99 + + 1 50 51 ) . \frac{2\ln(100)}{101} - 2\left( \frac1{1\cdot 100} + \frac1{2\cdot 99} + \cdots + \frac1{50\cdot 51} \right). Of course, g ( 101 ) ( 0 ) g^{(101)}(0) is the coefficient of z 101 z^{101} times 101 ! . 101!.

Let's put that all together: f ( 101 ) ( 100 ) = g ( 101 ) ( 0 ) 10 0 101 = 101 ! ( coefficient of z 101 ) 10 0 101 = 101 ! ( 2 ln ( 100 ) 101 2 ( 1 1 100 + 1 2 99 + + 1 50 51 ) ) 10 0 101 = 100 ! ( 2 ln ( 100 ) 2 ( 101 1 100 + 101 2 99 + + 101 50 51 ) ) 10 0 101 = 100 ! ( 2 ln ( 100 ) 2 ( 1 1 + 1 100 + 1 2 + 1 99 + + 1 50 + 1 51 ) ) 10 0 101 = 2 100 ! ( H 100 ln ( 100 ) ) 10 0 101 , \begin{aligned} f^{(101)}(100) &= \frac{g^{(101)}(0)}{100^{101}} \\ &= \frac{101! \left( \text{coefficient of } z^{101} \right)}{100^{101}} \\ &= \frac{101! \left( \frac{2\ln(100)}{101} - 2\left( \frac1{1\cdot 100} + \frac1{2\cdot 99} + \cdots + \frac1{50\cdot 51} \right)\right)}{100^{101}} \\ &= \frac{100! \left( 2\ln(100) - 2\left( \frac{101}{1\cdot 100} + \frac{101}{2\cdot 99} + \cdots + \frac{101}{50\cdot 51} \right)\right)}{100^{101}} \\ &= \frac{100! \left( 2\ln(100) - 2\left( \frac11 + \frac1{100} + \frac12 + \frac1{99} + \cdots + \frac1{50} + \frac1{51} \right)\right)}{100^{101}} \\ &= -2 \cdot \frac{100!(H_{100} - \ln(100))}{100^{101}}, \end{aligned} where H n H_n is the n n th harmonic number . It is well-known that lim n ( H n ln ( n ) ) = γ , \lim\limits_{n\to\infty} (H_n - \ln(n)) = \gamma, so the answer is 2 100 ! γ 10 0 101 . -2 \cdot \frac{100!\gamma}{100^{101}}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...