Differentiation of Infinite Series

Calculus Level 2

y = sin x + sin x + sin x + y=\sqrt { \sin x+\sqrt { \sin x+\sqrt { \sin x + \sqrt{\cdots} } } }

What is the derivative (with respect to x x ) of the above infinitely nested expression?

d y d x \frac { { d }^{ \infty }y }{ { { dx }^{ \infty } } } cos x ln cos x \sqrt { \frac { \cos x }{ \ln { \cos x } } } sin x \sqrt { \sin x } cos x 2 y 1 \frac { \cos x }{ 2y-1 }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Md Zuhair
Jan 12, 2017

This problem has very easy solution.

Here y = sin x + sin x + sin x + y=\sqrt { \sin x+\sqrt { \sin x+\sqrt { \sin x + \sqrt{\cdots} } } }

Now , y = sin x + y y=\sqrt { \sin x+y} or y 2 = s i n x + y y^2 = sinx + y

Differentiating both sides with respect to x we get,

2 y d y d x = c o s x + d y d x 2y\dfrac{dy}{dx} = cosx + \dfrac{dy}{dx}

Hence after solving for d y d x \dfrac{dy}{dx} we get

d y d x \dfrac{dy}{dx} = c o s x 2 y 1 \dfrac{cosx}{2y-1} (Ans)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...