function loves integral

Calculus Level 4

a f u n c t i o n f s a t i s f i e s f ( x ) = f ( c / x ) f o r s o m e r e a l n u m b e r c ( > 1 ) a n d a l l p o s i t i v e n u m b e r x . i f 1 c f ( x ) / x d x = 3 , t h e n 1 c f ( x ) / x d x e q u a l s ? a\quad function\quad f\quad satisfies\quad f\left( x \right) =f(c/x)\quad for\quad some\quad real\quad number\\ c(>1)\quad and\quad all\quad positive\quad number\quad x.\quad \\ if\quad \int _{ 1 }^{ \sqrt { c } }{ f\left( x \right) /x\quad dx } =3\quad ,then\quad \int _{ 1 }^{ c }{ f(x)/x\quad dx } \quad equals? please post a solution .


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

First Last
Jul 1, 2017

\displaystyle\int_1^\sqrt{c}\frac{f(x)}{x}dx=\int_\sqrt{c}^c\frac{f(\frac{c}{u})}{u}du=\int_\sqrt{c}^c\frac{f(u)}{u}du=3\quad\quad\text{by }u=\frac1{x}\text{ and }c>1

Anding the two integrals together \displaystyle\int_1^\sqrt{c}\frac{f(x)}{x}dx+\int_\sqrt{c}^c\frac{f(u)}{u}du=\int_1^c\frac{f(x)}{x}dx=3+3=6

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...