Two Lines Enclose A Cot

Geometry Level 3

Find the number of solutions of the equation

cot x = cot x + sin x \large |\cot x|=\cot x + \sin x

in the interval ( 0 , π ) (0,\pi) .

1 4 2 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Michael Huang
Dec 24, 2016

Either cot ( x ) = cot ( x ) + sin ( x ) \cot(x) = \cot(x) + \sin(x) or cot ( x ) = cot ( x ) sin ( x ) \cot(x) = -\cot(x) - \sin(x) .


First Case - cot ( x ) = cot ( x ) + sin ( x ) \cot(x) = \cot(x) + \sin(x)


Simplifying the equation, we have sin ( x ) = 0 \sin(x) = 0 . But since cot ( x ) = cos ( x ) sin ( x ) \cot(x) = \dfrac{\cos(x)}{\sin(x)} where sin ( x ) 0 \sin(x) \neq 0 , this proves that there are no solutions.


Second Case - cot ( x ) = ( cot ( x ) + sin ( x ) ) \cot(x) = -\left(\cot(x) + \sin(x)\right)


Solving the equation, cos ( x ) sin ( x ) = cos ( x ) sin ( x ) sin ( x ) cot ( x ) = cos ( x ) sin ( x ) cos ( x ) = cos ( x ) sin 2 ( x ) 0 = 2 cos ( x ) sin 2 ( x ) 0 = 2 cos ( x ) ( 1 cos 2 ( x ) ) Since sin 2 ( x ) + cos 2 ( x ) = 1 0 = cos 2 ( x ) 2 cos ( x ) 1 1 = cos 2 ( x ) 2 cos ( x ) 2 = cos 2 ( x ) 2 cos ( x ) + 1 Completing the squares 2 = ( cos ( x ) 1 ) 2 ± 2 = cos ( x ) 1 x = arccos ( 1 ± 2 ) \begin{array}{rlcccl} \dfrac{\cos(x)}{\sin(x)} &= -\dfrac{\cos(x)}{\sin(x)} - \sin(x) & & & & {\color{#3D99F6}\cot(x) = \dfrac{\cos(x)}{\sin(x)}}\\ \cos(x) &= -\cos(x) - \sin^2(x)\\ 0 &= -2\cos(x) - \sin^2(x)\\ 0 &= -2\cos(x) - \left(1 - \cos^2(x)\right) & & & & {\color{#3D99F6}\text{Since }\sin^2(x) + \cos^2(x) = 1}\\ 0 &= \cos^2(x) - 2\cos(x) - 1\\ 1 &= \cos^2(x) - 2\cos(x)\\ 2 &= \cos^2(x) - 2\cos(x) + 1 & & & & {\color{#3D99F6}\text{Completing the squares}}\\ 2 &= \left(\cos(x) - 1\right)^2\\ \pm\sqrt{2} &= \cos(x) - 1\\ x &= \arccos\left(1 \pm \sqrt{2}\right) \end{array} Since 1 + 2 > 1 1 + \sqrt{2} > 1 , this gives imaginary solution. Therefore, x = arccos ( 1 2 ) x = \arccos\left(1 - \sqrt{2}\right) , which is within ( 0 , π ) (0,\pi) .


Final Result


Thus, there is one solution \boxed{\text{one solution}} .

Sabhrant Sachan
Dec 24, 2016

Let f ( x ) = cot x cot x sin x f(x) = |\cot{x}|-\cot{x}-\sin{x}

f ( x ) = ( if 0 < x π 2 f ( x ) = cot x cot x sin x if π 2 < x < π f ( x ) = 2 cot x sin x ) f(x) = \left( \begin{matrix} \text{if } 0<x\le\frac{\pi}{2} & f(x) =\cancel{\cot{x}}-\cancel{\cot{x}}-\sin{x} \\ \text{if } \frac{\pi}{2}< x < \pi & f(x) = -2\cot{x}-\sin{x} \end{matrix} \right)

  • 0 < x π 2 0<x\le\dfrac{\pi}{2}

sin x = 0 x = n π where n is an integer . x = ϕ \sin{x} = 0 \implies x = n\pi \quad \small\text{where n is an integer} . \\ x = \phi

  • π 2 < x < π \dfrac{\pi}{2}< x < \pi

2 cot x = sin x 2 cos x = 1 c o s 2 x Cosx should be -ve cos x = 1 + 2 , 1 2 x = cos 1 ( 0.414 ) \begin{aligned} -2\cot{x} & = \sin{x} \\ -2\cos{x} & = 1-cos^{2}{x} \quad \small\color{#3D99F6}{\text{Cosx should be -ve }} \\ \cos{x} & = 1+\sqrt2,1-\sqrt2 \\ x &= \cos^{-1}(-0.414) \end{aligned}

Only 1 solution exist \text{Only 1 solution exist}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...