A calculus problem by Sriram Radhakrishnan

Calculus Level 3

0 π / 2 ln ( tan 2 x ) d x \large \int_0^{\pi / 2} \ln ( \tan^2 x ) \, dx

The integral above has a closed form. Find the value of this closed form.


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Aug 15, 2016

The integral can be solved using the integration trick (reflection) : a b f ( x ) d x = a b f ( a + b x ) d x \displaystyle \int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx .

I = 0 π 2 log ( tan 2 x ) d x = 1 2 0 π 2 log ( tan 2 x ) + log ( tan 2 ( π 2 x ) ) d x = 1 2 0 π 2 log ( tan 2 x ) + log ( cot 2 x ) d x = 1 2 0 π 2 log ( tan 2 x ) + log ( 1 tan 2 x ) d x = 1 2 0 π 2 log ( tan 2 x ) log ( tan 2 x ) d x = 0 \begin{aligned} I & = \int_0^\frac \pi 2 \log \left(\tan^2 x \right) dx \\ & = \frac 12 \int_0^\frac \pi 2 \log \left(\tan^2 x \right) + \log \left(\tan^2 \left(\frac \pi 2 - x \right) \right) dx \\ & = \frac 12 \int_0^\frac \pi 2 \log \left(\tan^2 x \right) + \log \left(\cot^2 x \right) dx \\ & = \frac 12 \int_0^\frac \pi 2 \log \left(\tan^2 x \right) + \log \left(\frac 1{\tan^2 x} \right) dx \\ & = \frac 12 \int_0^\frac \pi 2 \log \left(\tan^2 x \right) - \log \left(\tan^2 x \right) dx \\ & = \boxed{0} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...