The integral above has a closed form. Find the value of this closed form.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
The integral can be solved using the integration trick (reflection) : ∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x .
I = ∫ 0 2 π lo g ( tan 2 x ) d x = 2 1 ∫ 0 2 π lo g ( tan 2 x ) + lo g ( tan 2 ( 2 π − x ) ) d x = 2 1 ∫ 0 2 π lo g ( tan 2 x ) + lo g ( cot 2 x ) d x = 2 1 ∫ 0 2 π lo g ( tan 2 x ) + lo g ( tan 2 x 1 ) d x = 2 1 ∫ 0 2 π lo g ( tan 2 x ) − lo g ( tan 2 x ) d x = 0