Viva La Revolucion!

Calculus Level 3

The volume of the solid formed by revolving the curve

y = 1 x 1 x + 1 y= \frac{1}{\sqrt{x}} - \frac{1}{\sqrt{x+1}}

bounded between x = 1 8 x = \frac{1}{8} and x = 9 16 x=\frac{9}{16} around the x x -axis is in the the form A π ln B C . A \pi \ln{\frac{B}{C}}.

If A A and B B are square-free, what is the value of A × B × C ? A \times B \times C?


The answer is 40.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Dec 24, 2014

The required integral is:

I = π 1 8 9 16 y 2 d x = π 1 8 9 16 ( 1 x 1 x + 1 ) 2 d x I = \pi \displaystyle \int _{\frac{1}{8}} ^{\frac{9}{16}} {y^2dx} = \pi \displaystyle \int _{\frac{1}{8}} ^{\frac{9}{16}} {\left( \dfrac {1}{\sqrt{x}} - \dfrac{1}{\sqrt{x+1}} \right)^2 dx}

= π 1 8 9 16 ( 1 x 2 x ( x + 1 ) + 1 x + 1 ) d x \quad = \pi \displaystyle \int _{\frac{1}{8}} ^{\frac{9}{16}} {\left( \dfrac {1}{x} - \dfrac{2}{\sqrt{x(x+1)}} + \dfrac {1}{x+1} \right) dx}

= π ( 1 8 9 16 d x x 2 1 8 9 16 d x x ( x + 1 ) + 1 8 9 16 d x x + 1 ) \quad = \pi \left( \displaystyle \int _{\frac{1}{8}} ^{\frac{9}{16}} { \dfrac {dx}{x}} -2 \displaystyle \int _{\frac{1}{8}} ^{\frac{9}{16}} { \dfrac {dx}{\sqrt{x(x+1)}}} + \displaystyle \int _{\frac{1}{8}} ^{\frac{9}{16}} { \dfrac {dx}{x+1}} \right)

= π ( I 1 2 I 2 + I 3 ) \quad = \pi (I_1-2I_2 + I_3)

I 1 = 1 8 9 16 d x x = [ ln x ] 1 8 9 16 = ln ( 9 16 ) ln ( 1 8 ) = ln ( 9 16 × 8 1 ) = ln ( 9 2 ) I_1 = \displaystyle \int _{\frac{1}{8}} ^{\frac{9}{16}} { \dfrac {dx}{x}} =\left[ \ln { x } \right] _{\frac{1}{8}} ^{\frac{9}{16}} = \ln {(\frac{9}{16})} - \ln {(\frac{1}{8})} = \ln {(\frac{9}{16}\times \frac{8}{1})} = \ln {(\frac {9}{2})}

Similarly, I 3 = ln ( 25 18 ) I_3 = \ln {(\frac {25}{18} )}

I 2 = 1 8 9 16 d x x ( x + 1 ) = 1 8 9 16 d x ( x + 1 2 ) 2 1 4 = 1 8 9 16 2 d x ( 2 x + 1 ) 2 1 I_2 = \displaystyle \int _{\frac{1}{8}} ^{\frac{9}{16}} { \dfrac {dx}{\sqrt{x(x+1)}}} = \displaystyle \int _{\frac{1}{8}} ^{\frac{9}{16}} { \dfrac {dx}{\sqrt{(x+\frac {1}{2})^2-\frac {1}{4}}}} = \displaystyle \int _{\frac{1}{8}} ^{\frac{9}{16}} { \dfrac {2\space dx}{\sqrt{(2x+1)^2-1}}}

Now substituting 2 x + 1 = sec θ 2x+1 = \sec {\theta} , then:

I 2 = sec 1 5 4 sec 1 17 8 2 ( 1 2 ) sec θ tan θ d θ sec 2 θ 1 = sec 1 5 4 sec 1 17 8 sec θ d θ I_2 = \displaystyle \int _{\sec ^{-1} {\frac{5}{4}}} ^{\sec ^{-1} {\frac{17}{8}}} { \dfrac {2(\frac{1}{2}) \sec{\theta} \tan {\theta} \space d\theta}{\sqrt{\sec^2 {\theta}-1}}} = \displaystyle \int _{\sec ^{-1} {\frac{5}{4}}} ^{\sec ^{-1} {\frac{17}{8}}} {\sec {\theta} \space d\theta}

= ln sec θ + tan θ sec 1 5 4 sec 1 17 8 = ln ( 17 8 + 15 8 ) ln ( 5 4 + 3 4 ) \quad = \ln {| \sec {\theta} + \tan {\theta} |} _{\sec ^{-1} {\frac{5}{4}}} ^{\sec ^{-1} {\frac{17}{8}}} = \ln {( \frac {17}{8} + \frac {15}{8})} - \ln {(\frac {5}{4} + \frac {3}{4} )}

= ln 4 ln 2 = ln 2 \quad = \ln {4} - \ln {2} = \ln {2}

I = π ( I 1 2 I 2 + I 3 ) = π ( ln ( 9 2 ) 2 ln 2 + ln ( 25 18 ) ) \Rightarrow I = \pi (I_1-2I_2+I_3) = \pi \left( \ln {(\frac {9}{2})} -2 \ln{2} + \ln {(\frac {25}{18} )} \right)

= π ln ( 9 2 × 1 2 2 × 25 18 ) = π ln ( 25 16 ) = 2 π ln ( 5 4 ) \quad \quad = \pi \ln {(\frac {9}{2} \times \frac {1}{2^2} \times \frac {25}{18})} = \pi \ln {( \frac {25}{16})} = 2\pi \ln {(\frac {5}{4})}

A = 2 \Rightarrow A=2 , B = 5 B=5 and C = 4 A × B × C = 40 C=4\quad \Rightarrow A\times B \times C = \boxed{40}

can you please explain how volume of revolution = integral (pi) y^2

Vighnesh Raut - 6 years, 5 months ago

Log in to reply

Vighnesh, sorry, I didn't explain it clearly. Imagine you cut a small slice δ x \delta x under the curve y y and you revolve it along the x x -axis. You will get a thin disk of radius y y and thickness δ x \delta x therefore its volume is cross-sectional area × \times thickness δ V = π y 2 δ x \Rightarrow \delta V = \pi y^2 \delta x .

To find the volume of revolution of y y along the x x -axis from x = a x=a to x = b x=b we do: lim n π 0 n y 2 δ x = π a b y 2 d x \space \displaystyle \lim _{n \rightarrow \infty} \pi \sum _0 ^n {y^2 \delta x} = \pi \int _a ^b {y^2 \space dx} .

You should find this in calculus textbooks or on Volume of Revolution - Disc Method

Chew-Seong Cheong - 6 years, 5 months ago

Log in to reply

Oh!!! Thnx a lot Chew-Seong for your kind help....

Vighnesh Raut - 6 years, 5 months ago

@Steven Zheng This is not a solution, but I just thought I should point out a potential ambiguity. Note that π ln ( 25 16 ) = 2 π ln ( 5 4 ) \pi*\ln(\frac{25}{16}) = 2\pi*\ln(\frac{5}{4}) , thus 1 25 16 = 400 1*25*16 = 400 and 2 4 5 = 40 2*4*5 = 40 would both be valid answers. To avoid this ambiguity, you might want to specify that A , B , C A,B,C are integers with A , B A,B being square-free.

Edit: Now for an actual solution .....

Using the disk method, we have that the volume of revolution is

a b π y 2 d x = π a b ( 1 x + 1 x + 1 2 x ( x + 1 ) ) d x = π ln ( x ( x + 1 ) ) π R \displaystyle\int_{a}^{b} \pi y^{2} dx = \pi \int_{a}^{b} (\dfrac{1}{x} + \dfrac{1}{x + 1} - \dfrac{2}{\sqrt{x(x + 1)}}) dx =\pi*\ln(x(x + 1)) - \pi*R

evaluated from a = 1 8 a = \frac{1}{8} to b = 9 16 b = \frac{9}{16} , where

R = 2 a b d x x 2 + x + 1 4 1 4 = 2 d u u 2 1 R = 2 \displaystyle\int_{a}^{b} \dfrac{dx}{\sqrt{x^{2} + x + \frac{1}{4} - \frac{1}{4}}} = 2 \int \dfrac{du}{\sqrt{u^{2} - 1}} ,

where I have made the substitution u = 2 x + 1 u = 2x + 1 .

Now let u = sec ( θ ) u = \sec(\theta) , making d u = sec ( θ ) tan ( θ ) d θ du = \sec(\theta)\tan(\theta) d\theta and u 2 1 = tan ( θ ) \sqrt{u^{2} - 1} = \tan(\theta) . We then end up with

R = 2 sec ( θ ) d θ = 2 ln ( sec ( θ ) + tan ( θ ) ) = 2 ln ( 2 x + 1 + 2 x ( x + 1 ) ) R = 2 \displaystyle\int \sec(\theta) d\theta = 2*\ln(\sec(\theta) + \tan(\theta)) = 2*\ln(2x + 1 + 2\sqrt{x(x + 1)})

evaluated from a a to b b . Plugging in the values for a a and b b yields a volume of

π ( ln ( 225 256 ) 2 ln ( 4 ) ( ln ( 9 64 ) 2 ln ( 2 ) ) ) = 2 π ln ( 5 4 ) . \pi(\ln(\frac{225}{256}) - 2\ln(4) - (\ln(\frac{9}{64}) - 2\ln(2))) = 2\pi \ln(\frac{5}{4}).

Thus A B C = 2 5 4 = 40 A*B*C = 2*5*4 = \boxed{40} .

Nice solution; I used the same method. Thank you Steven Zheng for the excellent problem too.

Michael Ng - 6 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...