A calculus problem by Sudipan Mallick

Calculus Level 4

Evaluate 0 x 3 e x 1 d x . \int_0^\infty \dfrac{x^3}{e^x-1} \, dx.

Give your answer to 2 decimal places.


The answer is 6.48.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Jubayer Nirjhor
Sep 13, 2014

We begin by rearranging: 0 x 3 e x 1 d x = 0 x 3 1 / e x 1 1 / e x d x . \int_0^\infty \dfrac{x^3}{e^x-1}~\text d x=\int_0^\infty x^3 \dfrac{1/e^x}{1-1/e^x}~\text d x. Now write 1 / e x 1 1 / e x = n = 1 ( 1 e x ) n = n = 1 1 e x n \dfrac{1/e^x}{1-1/e^x}=\sum_{n=1}^\infty \left(\dfrac{1}{e^x}\right)^n=\sum_{n=1}^\infty \dfrac{1}{e^{xn}} which follows directly from the infinite summation formula of geometric series, to get 0 x 3 1 / e x 1 1 / e x d x = 0 x 3 n = 1 1 e x n d x = n = 1 0 x 3 e x n d x . \int_0^\infty x^3 \dfrac{1/e^x}{1-1/e^x}~\text d x=\int_0^\infty x^3 \sum_{n=1}^\infty \dfrac{1}{e^{xn}}~\text d x=\sum_{n=1}^\infty \int_0^\infty \dfrac{x^3}{e^{xn}}~\text d x. We substitute z = x n z=xn so that d z = n d x \text d z=n~\text d x . Putting these yields n = 1 0 x 3 e x n d x = n = 1 0 z 3 e z 1 n 4 d z = ( n = 1 1 n 4 ) ( 0 z 3 e z d z ) . \sum_{n=1}^\infty \int_0^\infty \dfrac{x^3}{e^{xn}}~\text d x=\sum_{n=1}^\infty \int_0^\infty \dfrac{z^3}{e^z}\dfrac{1}{n^4}~\text d z=\left(\sum_{n=1}^\infty \dfrac{1}{n^4}\right)\left(\int_0^\infty \dfrac{z^3}{e^z}~\text d z\right). By the definitions of Gamma and Zeta functions, it now easily follows that ( n = 1 1 n 4 ) ( 0 z 3 e z d z ) = ζ ( 4 ) Γ ( 4 ) = π 4 90 × 3 ! = π 4 15 \left(\sum_{n=1}^\infty \dfrac{1}{n^4}\right)\left(\int_0^\infty \dfrac{z^3}{e^z}~\text d z\right)=\zeta(4)~\Gamma(4)=\dfrac{\pi^4}{90}\times 3!=\boxed{\dfrac{\pi^4}{15}} which is approximately 6.5 6.5 . Notice that x 3 x^3 can be replaced by x k x^k and the same proof above yields ζ ( k + 1 ) Γ ( k + 1 ) \zeta(k+1)~\Gamma(k+1) .

Used the same method !!!

A Former Brilliant Member - 6 years, 4 months ago

Wonderful , learned a new thing

U Z - 6 years, 4 months ago

First we prove the following proposition:

Proposition :

0 1 x a ln k x d x = ( 1 ) k k ! ( a + 1 ) k + 1 for k = 0 , 1 , 2 , \int_0^1 x^a \ln^k x\ dx=\frac{(-1)^k\, k!}{(a+1)^{k+1}} \qquad\text{for }\ k=0,1,2,\ldots

Proof :

Note that 0 1 x a d x = 1 a + 1 for α > 1. \int_0^1 x^a\ dx=\frac1{a+1}\qquad\text{for }\ \alpha>-1. Differentiating equation above k k times w.r.t. a a we have 0 1 k a k ( x a ) d x = 0 1 x a ln k x d x = ( 1 ) k k ! ( a + 1 ) k + 1 Q.E.D. \int_0^1 \frac{\partial^k}{\partial a^k}\left(x^a\right)\ dx=\int_0^1 x^a \ln^k x\ dx=\frac{(-1)^k\, k!}{(a+1)^{k+1}}\qquad\text{Q.E.D.}

Now, we will evaluate the general case of

0 x a 1 e b x 1 d x = 0 x a 1 e b x 1 e b x d x for a , b > 0 \int_0^\infty\frac{x^{a-1}}{e^{bx}-1}\,dx=\int_0^\infty\frac{x^{a-1}\,e^{-bx}}{1-e^{-bx}}\,dx\qquad\text{for }\ a,b>0

Set y = e b x y=e^{-bx} , then

0 x a 1 e b x 1 d x = ( 1 ) a 1 b a 0 1 ln a 1 y 1 y d y \int_0^\infty\frac{x^{a-1}}{e^{bx}-1}\,dx=\frac{(-1)^{a-1}}{b^a}\int_0^1\frac{\ln^{a-1}y}{1-y}\,dy

Use a geometric series for 1 1 y \dfrac{1}{1-y} then interchange the integral and summation sign which is justified by the Fubini–Tonelli theorem and apply the previous proposition, we have

0 x a 1 e b x 1 d x = ( 1 ) a 1 b a 0 1 k = 0 y k ln a 1 y d y = ( 1 ) a 1 b a k = 0 0 1 y k ln a 1 y d y = ( 1 ) a 1 b a k = 0 ( 1 ) a 1 ( a 1 ) ! ( k + 1 ) a = ( a 1 ) ! b a k = 1 1 k a = Γ ( a ) ζ ( a ) b a \begin{aligned} \int_0^\infty\frac{x^{a-1}}{e^{bx}-1}\,dx&=\frac{(-1)^{a-1}}{b^a}\int_0^1\sum_{k=0}^\infty y^k\,\ln^{a-1}y\,dy\\ &=\frac{(-1)^{a-1}}{b^a}\sum_{k=0}^\infty\int_0^1 y^k\,\ln^{a-1}y\,dy\\ &=\frac{(-1)^{a-1}}{b^a}\sum_{k=0}^\infty \frac{(-1)^{a-1}\, (a-1)!}{(k+1)^{a}}\\ &=\frac{(a-1)!}{b^a}\sum_{k=1}^\infty \frac{1}{k^{a}}\\ &=\frac{\Gamma(a)\,\zeta(a)}{b^a} \end{aligned}

where Γ ( a ) \Gamma(a) is the gamma function and ζ ( a ) \zeta(a) is the Riemann zeta function .

Hence, by setting a = 4 a=4 and b = 1 b=1 , we have

0 x 3 e x 1 d x = Γ ( 4 ) ζ ( 4 ) = 3 ! π 4 90 = π 4 15 \int_0^\infty\frac{x^{3}}{e^{x}-1}\,dx=\Gamma(4)\,\zeta(4)=3!\cdot\frac{\pi^4}{90}=\frac{\pi^4}{15}

Shivang Jindal
Sep 13, 2014

Well this is one of the definations of Riemann Zeta function

http://mathworld.wolfram.com/RiemannZetaFunction.html

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...