Euler and Mascheroni would be proud of you!

Calculus Level 2

1 ( 1 x 1 x ) d x = ? \displaystyle \int_1^\infty \left(\dfrac{1}{\lfloor x\rfloor}-\dfrac{1}{x}\right) dx~ = ~?

Submit your answer to 3 decimal places.


The answer is 0.577.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Sep 16, 2016

Relevant wiki: Euler-Mascheroni Constant

I = 1 ( 1 x 1 x ) d x = lim n k = 1 n k k + 1 ( 1 k 1 x ) d x where k is a positive integer. = lim n k = 1 n [ x k ln x ] k k + 1 = lim n k = 1 n ( k + 1 k k k ln ( k + 1 ) + ln k ) = lim n ( k = 1 n 1 k ln n ) = lim n ( H n ln n ) where H n is a harmonic number. = γ 0.577 where γ is Euler-Mascheroni constant. \begin{aligned} I & = \int_1^\infty \left(\frac 1{\lfloor x \rfloor} - \frac 1x \right) dx \\ & = \lim_{n \to \infty} \sum_{k=1}^n \int_k^{k+1} \left(\frac 1k - \frac 1x \right) dx & \small \color{#3D99F6}{\text{where }k \text{ is a positive integer.}} \\ & = \lim_{n \to \infty} \sum_{k=1}^n \left[\frac xk - \ln x \right]_k^{k+1} \\ & = \lim_{n \to \infty} \sum_{k=1}^n \left(\frac {k+1}k - \frac kk - \ln (k+1) + \ln k \right) \\ & = \lim_{n \to \infty} \left( \sum_{k=1}^n \frac 1k - \ln n \right) \\ & = \lim_{n \to \infty} \left(H_n - \ln n \right) & \small \color{#3D99F6}{\text{where }H_n \text{ is a harmonic number.}} \\ & = \gamma \approx \boxed{0.577} & \small \color{#3D99F6}{\text{where }\gamma \text{ is Euler-Mascheroni constant.}} \end{aligned}

Nice solution there! But there's a slight mistake.

It should actually be,

lim n ( k = 1 n 1 k ln n ) \displaystyle \lim_{n\to\infty}\left(\displaystyle\sum_{k=1}^{n}\dfrac{1}{k}-\ln n\right)

Instead of,

lim n k = 1 n ( 1 k ln n ) \displaystyle \lim_{n\to\infty}\displaystyle\sum_{k=1}^{n}\left(\dfrac{1}{k}-\ln n\right)

as you've already taken the sum k = 1 n ln ( k + 1 k ) = ln n \displaystyle \sum_{k=1}^{n}-\ln\left(\dfrac{k+1}{k}\right) = -\ln n

Tapas Mazumdar - 4 years, 9 months ago

Log in to reply

Thanks. I have done the changes.

Chew-Seong Cheong - 4 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...