A calculus problem by Vighnesh Raut

Calculus Level 3

f ( x ) = π 2 16 x 2 cos x cos θ 1 + sin 2 θ d θ {f( x ) =\int _{ \frac { { \pi }^{ 2 } }{ 16 } }^{ { x }^{ 2 } }{ \frac { \cos { x } \cos { \sqrt { \theta } } }{ 1+\sin ^{ 2 }{ \sqrt { \theta } } } d\theta } }

For f ( x ) f(x) as defined above, find k k such that f ( π ) = 2 π k f'(\pi )=\dfrac { 2\pi }k .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

f ( x ) = π 2 16 x 2 cos x cos θ 1 + sin 2 θ d θ \large f\left( x \right) =\int _{ \frac { { \pi }^{ 2 } }{ 16 } }^{ { x }^{ 2 } }{ \frac { \cos { x } \cos { \sqrt { \theta } } }{ 1+\sin ^{ 2 }{ \sqrt { \theta } } } d\theta}

f ( x ) = c o s x . c o s x 2 1 + s i n 2 x 2 . ( 2 x ) c o s x . c o s π 2 16 1 + s i n 2 π 2 16 . ( 0 ) \Rightarrow f^{ \prime }\left( x \right) =\frac { cos\quad x.cos\quad \sqrt { { x }^{ 2 } } }{ 1+{ sin }^{ 2 }\sqrt { { x }^{ 2 } } } .(2x)-\frac { cos\quad x.cos\quad \sqrt { \frac { { \pi }^{ 2 } }{ 16 } } }{ 1+{ sin }^{ 2 }\sqrt { \frac { { \pi }^{ 2 } }{ 16 } } } .(0)

For knowing how the above step came, refer this .

f ( x ) = c o s x . c o s x 1 + s i n 2 x . ( 2 x ) 0 = 2 x . c o s 2 x 1 + s i n 2 x \Rightarrow f^{ \prime }\left( x \right) =\frac { cos\quad x.cos\quad x }{ 1+{ sin }^{ 2 }\quad x } .(2x)-0\quad =\quad \frac { 2x.{ cos }^{ 2 }\quad x }{ 1+{ sin }^{ 2 }\quad x }

N o w , f ( π ) = 2 π . ( 1 ) 1 + 0 = 2 π 1 Now, f^{ \prime }\left( \pi \right) =\frac { 2\pi .(1) }{ 1+0 } =\frac { 2\pi }{ 1 }

k = 1 \Rightarrow \boxed{k = 1}

Chew-Seong Cheong
Sep 18, 2019

f ( x ) = π 2 16 x 2 cos x cos θ 1 + sin 2 θ d θ Let t 2 = θ 2 t d t = d θ = π 4 x 2 t cos x cos t 1 + sin 2 t d t By fundamental theorem of calculus: f ( x ) = 2 x cos 2 x 1 + sin 2 x S ( x ) = a x f ( t ) d t S ( x ) = f ( x ) f ( π ) = 2 π \begin{aligned} f(x) & = \int_{\frac {\pi^2}{16}}^{x^2} \frac {\cos x \cos \sqrt \theta}{1+\sin^2 \sqrt \theta} d\theta & \small \color{#3D99F6} \text{Let }t^2 = \theta \implies 2t \ dt = d\theta \\ & = \int_\frac \pi 4^x \frac {2t \cos x \cos t}{1+\sin^2 t} dt & \small \color{#3D99F6} \text{By fundamental theorem of calculus:} \\ \implies f'(x) & = \frac {2x \cos^2 x}{1+\sin^2 x} & \small \color{#3D99F6} S(x) = \int_a^x f(t) \ dt \implies S'(x) = f(x) \\ f'(\pi) & = 2\pi \end{aligned}

Therefore, k = 1 k=\boxed 1 .


Reference: Fundamental theorems of calculus

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...