A trigonometric problem

Geometry Level 4

If tan A \tan A and tan B \tan B are the roots of x 2 12 x + 32 = 0 x^2 - 12x + 32 = 0 .

What is the value of

sin 2 ( A + B ) 12 sin ( A + B ) cos ( A + B ) + 32 cos 2 ( A + B ) ? \sin^2(A+B)- 12\sin(A+B)\cos(A+B) + 32\cos^2(A+B) ?


The answer is 32.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Nov 23, 2016

Relevant wiki: Sum and Difference Trigonometric Formulas - Problem Solving

Consider

x 2 12 x + 32 = 0 ( x 4 ) ( x 8 ) = 0 tan A , tan B = 4 , 8 tan ( A + B ) = 4 + 8 1 ( 4 ) ( 8 ) = 12 31 \begin{aligned} x^2 - 12x + 32 & = 0 \\ (x-4)(x-8) & = 0 \\ \implies \tan A, \tan B & = 4, 8 \\ \implies \tan (A+B) & = \frac {4+8}{1-(4)(8)} = - \frac {12}{31} \end{aligned}

Now, we have:

X = sin 2 ( A + B ) 12 sin ( A + B ) cos ( A + B ) + 32 cos 2 ( A + B ) = cos 2 ( A + B ) [ tan 2 ( A + B ) 12 tan ( A + B ) + 32 ] = ( tan ( A + B ) 4 ) ( tan ( A + B ) 8 ) sec 2 ( A + B ) = ( 12 31 4 ) ( 12 31 8 ) 1 + ( 12 31 ) 2 = ( 136 ) ( 260 ) 1105 = 32 \begin{aligned} X & = \sin^2 (A+B) - 12 \sin(A+B) \cos(A+B) + 32 \cos^2 (A+B) \\ & = \cos^2 (A+B) \left[\tan^2 (A+B) - 12 \tan(A+B) + 32 \right] \\ & = \frac {(\tan (A+B) -4)(\tan (A+B) - 8)}{\sec^2 (A+B)} \\ & = \frac {\left(- \frac {12}{31}-4\right)\left(- \frac {12}{31}-8\right)}{1+\left(- \frac {12}{31}\right)^2} \\ & = \frac {(136)(260)}{1105} \\ & = \boxed{32} \end{aligned}

!!!! I did absolutely as above!!!

Niranjan Khanderia - 4 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...