A Calculus Problem

Calculus Level 4

Let

I 1 = 0 π 4 e x 2 . d x I_{1}=\displaystyle \int^{\frac{\pi}{4}}_{0} e^{x^{2}}.dx

I 2 = 0 π 4 e x . d x I_{2}=\displaystyle \int^{\frac{\pi}{4}}_{0} e^{x}.dx

I 3 = 0 π 4 e x 2 c o s x . d x I_{3}=\displaystyle \int^{\frac{\pi}{4}}_{0} e^{x^{2}}cosx.dx

I 4 = 0 π 4 e x 2 s i n x . d x I_{4}=\displaystyle \int^{\frac{\pi}{4}}_{0} e^{x^{2}}sinx.dx

then which of the following is correct

I 3 > I 1 > I 4 > I 2 I_{3}>I_{1}>I_{4}>I_{2} I 4 = I 3 > I 2 > I 1 I_{4}=I_{3}>I_{2}>I_{1} I 2 > I 4 > I 3 > I 1 I_{2}>I_{4}>I_{3}>I_{1} None I 1 > I 2 > I 3 > I 4 I_{1}>I_{2}>I_{3}>I_{4} I 2 > I 1 > I 3 > I 4 I_{2}>I_{1}>I_{3}>I_{4}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Since π 4 < 1 \dfrac{\pi}{4}<1 we have for x ( 0 , π 4 ) x\in (0,\dfrac{\pi}{4}) , e x > e x 2 > e x 2 cos x > e x 2 sin x \displaystyle e^x > e^{x^2} > e^{x^2}\cos x > e^{x^2}\sin x since cos x > sin x \cos x > \sin x in x ( 0 , π 4 ) x\in (0,\dfrac{\pi}{4}) . Now integrate all sides to get I 2 > I 1 > I 3 > I 4 I_2>I_1>I_3>I_4 .

Pulkit Gupta
Nov 27, 2015

Lets focus on the limit of the integrals. Clearly x can take values from 0 to π \pi /4.

In this interval sin θ \sin \theta trails cos θ \cos \theta . Thus, I 3 I_{3} > I 4 I_{4} We have reduced our search for the answer to two options with this.

Now, since π \pi /4 < 1, we infer x 2 x^{2} < x in this interval. Thus, I 2 I_{2} > I 1 I_{1}

Voila, we have the answer :)

Mohamed Laghlal
Nov 25, 2015

π / 4 < 1 x [ 0 , π / 4 ] , x > x 2 0 π / 4 e x d x > 0 π / 4 e x 2 d x . x [ 0 , π / 4 ] 0 < c o s ( x ) < 1 0 < 0 π / 4 e x 2 c o s ( x ) d x < 0 π / 4 e x 2 d x ( c o s ( x ) s i n ( x ) ) = s i n ( x ) c o s ( x ) < = 0 x [ 0 , π / 4 ] x [ 0 , π / 4 ] c o s ( x ) s i n ( x ) > = c o s ( π / 4 ) s i n ( π / 4 ) = 0 c o s ( x ) > s i n ( x ) 0 π / 4 e x 2 c o s ( x ) d x > 0 π / 4 e x 2 s i n ( x ) d x \pi /4 < 1 \Rightarrow \forall x \in [ 0, \pi/4 ], x > x^2 \Rightarrow \int_{0}^{\pi/4} e^x dx > \int_{0}^{\pi/4} e^{x^2} dx. \\ \forall x \in [ 0, \pi/4 ] \ 0 < cos(x) < 1 \Rightarrow 0 < \int_{0}^{\pi/4} e^{x^2}cos(x) dx < \int_{0}^{\pi/4} e^{x^2} dx \\(cos(x)-sin(x))' = -sin(x) - cos(x) <= 0 \ \forall x \in [ 0, \pi/4 ] \\ \Rightarrow \forall x \in [ 0, \pi/4 ] cos(x)-sin(x) >= cos(\pi/4) - sin(\pi/4) = 0 \\ \Rightarrow cos(x) > sin(x) \Rightarrow \int_{0}^{\pi/4} e^{x^2}cos(x) dx > \int_{0}^{\pi/4} e^{x^2}sin(x) dx

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...