A cambridge interview problem

Algebra Level 1

3 2 2 = ? \sqrt{3 - 2\sqrt{2}} = \ ?

2 1 \sqrt{2} - 1 3 1 \sqrt{3} - 1 3 2 \sqrt{3} - \sqrt{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

3 2 2 = 2 + 1 2 2 = 2 2 + 1 2 2 ( 2 ) ( 1 ) = ( 2 1 ) 2 = 2 1 \begin{aligned} \sqrt{3 - 2 \sqrt{2}} &= \sqrt{2 + 1 - 2 \sqrt{2}} \\ &= \sqrt{\sqrt{2}^{2} + 1^{2} - 2(\sqrt{2})(1)} \\ &= \sqrt{(\sqrt{2} - 1)^{2}} \\ &= \boxed{\sqrt{2} - 1} \end{aligned}

Richard Desper
Sep 29, 2020

( 2 1 ) 2 = 2 2 2 + 1 = 3 2 2 (\sqrt{2} - 1)^2 = 2 - 2\sqrt{2} + 1 = 3 - 2\sqrt{2} .

Note that of the three possible answers, only ( 2 1 ) (\sqrt{2} - 1) is in the ring Z [ 2 ] \mathbb{Z}[\sqrt{2}] so it's the only possible answer.

See: ring theory .

Generally let's take

x y \sqrt{x-\sqrt{y}} = a b \sqrt{a}-\sqrt{b}

x y x-\sqrt{y} = a + b 2 a b a +b-2\sqrt{ab} ( Squaring both sides )

So, x = a + b x= a+b

And y \sqrt{y} = 2 a b 2\sqrt{ab}\cdots Eq (a)

So, y = 4 a b y = 4ab

( a b ) (a-b) = ± ( a + b ) 2 4 a b ±\sqrt{(a+b)^2 -4ab}

( a b ) (a-b) = ± x 2 y ±\sqrt{x^2-y} \cdots *Eq (b) *

Solving two equations we will end up with

a = x + x 2 y 2 a= \frac{x+\sqrt{x^2-y}}{2}

And b = x x 2 y 2 b=\frac{x-\sqrt{x^2-y}}{2}

So x y \sqrt{x-\sqrt{y}} = a b \sqrt{a}-\sqrt{b}

x y \sqrt{x-\sqrt{y}} = x + x 2 y 2 x x 2 y 2 \sqrt{\frac{x+\sqrt{x^2-y}}{2}}-\sqrt{\frac{x-\sqrt{x^2-y}}{2}}

As per question x = 3 x= 3 and y = 8 y= 8

So 3 8 \sqrt{3-\sqrt{8}} = 2 1 \sqrt{2}-1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...