A certain sum

Algebra Level 3

A second degree polynomial is of the form x 2 x + c x^2-x+c for a real number c c . If the roots of the polynomial are a a and b b , and a 4 + b 4 = 7 a^4+b^4=7 , then find the sum of the possible values of a 5 + b 5 a^5+b^5 .


The answer is 42.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
May 17, 2019

Since a a and b b are the roots of x 2 x + c = 0 x^2 - x + c = 0 , by Vieta's formula , a + b = 1 a+b = 1 and a b = c ab=c . Using Newton's method , we have:

a + b = 1 a 2 + b 2 = ( a + b ) 2 2 a b = 1 2 c a 3 + b 3 = ( a + b ) ( a 2 + b 2 ) a b ( a + b ) = 1 3 c a 4 + b 4 = ( a + b ) ( a 3 + b 3 ) a b ( a 2 + b 2 ) = 1 4 c + 2 c 2 = 7 a 5 + b 5 = ( a + b ) ( a 4 + b 4 ) a b ( a 3 + b 3 ) = 7 c ( 1 3 c ) \begin{aligned} a+b & = 1 \\ a^2 + b^2 & = (a+b)^2 - 2ab = 1 - 2c \\ a^3 + b^3 & = (a+b)(a^2+b^2) - ab(a+b) = 1 - 3c \\ a^4 + b^4 & = (a+b)(a^3+b^3) - ab(a^2+b^2) =\color{#3D99F6} 1 - 4c + 2c^2 = 7 \\ a^5 + b^5 & = (a+b)(a^4+b^4) - ab(a^3+b^3) = 7 - c(1-3c) \end{aligned} .

From a 4 + b 4 = 7 a^4+b^4 = 7 :

2 c 2 4 x + 1 = 7 2 c 2 4 x 6 = 0 c 2 2 x 3 = 0 ( c + 1 ) ( c 3 ) = 0 c = { 1 3 \begin{aligned} \implies \color{#3D99F6} 2c^2 - 4x + 1 & \color{#3D99F6} = 7 \\ 2c^2 - 4x - 6 & = 0 \\ c^2 - 2x - 3 & = 0 \\ (c+1)(c-3) & = 0 \\ \implies c & = \begin{cases} - 1 \\ 3 \end{cases} \end{aligned}

a 5 + b 5 = 7 c ( 1 3 c ) = { 11 for c = 1 31 for c = 3 \implies a^5+ b^5 = 7-c(1-3c) = \begin{cases} 11 & \text{for }c = -1 \\ 31 & \text{for }c = 3 \end{cases}

Therefore, the sum of possible values is 11 + 31 = 42 11+31 = \boxed{42} .

Rab Gani
May 17, 2019

Expand (a+b)^5 = a^5 + b^5 + 5ab(a^3 + b^3) + 10 a^2b^2(a+b) = 1, but , a+b = 1, and ab=c. also (a+b)^3 = a^3 + b^3+ 3ab(a+b) = 1, so a^3 + b^3 = 1 – 3c. Substitute to a^5 + b^5 + 5c(1 – 3c) + 10 c^2 = 1,
But a^5 + b^5 = (a^4 + b^4)(a+b) – ab(a^3 + b^3) = 7-c+3c^2 So 7-c+3c^2 + 5c - 5 c^2 = 1, or c^2 -2c – 3 = 0. The solution : c=3, or -1. a^5 + b^5 = 31, or 11

Brian Miyatake
May 16, 2019

Let S n = a n + b n S_n=a^n+b^n . Then, by Newton's Sums ,

1 S 1 1 = 0 S 1 = 1 1\cdot S_1-1=0\Rightarrow S_1=1

1 S 2 1 S 1 + 2 c = 0 S 2 = 1 2 c 1\cdot S_2-1\cdot S_1+2c=0\Rightarrow S_2=1-2c

1 S 3 1 S 2 + c S 1 = 0 S 3 = 1 3 c 1\cdot S_3-1\cdot S_2+c\cdot S_1=0\Rightarrow S_3=1-3c

1 S 4 1 S 3 + c S 2 = 0 S 4 = 2 c 2 4 c + 1 1\cdot S_4-1\cdot S_3+c\cdot S_2=0\Rightarrow S_4=2c^2-4c+1

S 4 S_4 also equals to 7 7 , so 2 c 2 4 c + 1 = 7 c = 1 , 3 2c^2-4c+1=7\Rightarrow c= -1,3 .

Then, through one more iteration of Newton's Sums,

1 S 5 1 S 4 + c S 3 = 0 S 5 + c S 3 = 7 1\cdot S_5-1\cdot S_4 + c\cdot S_3 = 0\Rightarrow S_5+c\cdot S_3 = 7

Plugging in c = 1 c=-1 yields S 5 = 11 S_5=11 and c = 3 c=3 yields S 5 = 31 S_5=31 , so the answer is 11 + 31 = 42 \boxed{11+31=42} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...