A chain of triplets

Calculus Level 1

S = 1 1 2 3 + 1 3 4 5 + 1 5 6 7 + 1 7 8 9 + 1 9 10 11 + S=\dfrac { 1 }{ 1\cdot 2\cdot 3 } +\dfrac { 1 }{ 3\cdot 4\cdot 5 } +\dfrac { 1 }{ 5\cdot 6\cdot 7 } +\dfrac { 1 }{ 7\cdot 8\cdot 9 } +\frac { 1 }{ 9\cdot 10\cdot 11 } +\cdots

The sum S S can be expressed in the form ln A 1 A , \ln { A } -\frac { 1 }{ A }, where A A is a prime number.

What is A ? A?


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

Naren Bhandari
Apr 11, 2018

S = 1 1 2 3 + 1 3 4 5 + 1 5 6 7 + 1 7 8 9 + 1 9 10 11 + S = 3 2 1 2 3 + 5 4 3 4 5 + 7 6 5 6 7 + 9 8 7 8 9 + 11 10 9 10 11 + S = 1 2 3 + 1 3 4 + 1 5 6 + ( 1 3 5 + 1 5 7 + 1 7 9 + ) S = 1 2 1 3 + 1 3 1 4 + 1 2 ( 1 3 1 5 + 1 5 1 7 + 1 7 + ) S = 1 1 + 1 2 + 1 3 1 4 + 1 3 1 2 × 1 3 S = ln 2 1 3 ( 1 + 1 2 ) = ln 2 1 2 \begin{aligned} S =\dfrac { 1 }{ 1\cdot 2\cdot 3 } +\dfrac { 1 }{ 3\cdot 4\cdot 5 } +\dfrac { 1 }{ 5\cdot 6\cdot 7 } +\dfrac { 1 }{ 7\cdot 8\cdot 9 } +\frac { 1 }{ 9\cdot 10\cdot 11 } +\cdots \\ S =\dfrac { 3-2}{ 1\cdot 2\cdot 3 } +\dfrac { 5-4 }{ 3\cdot 4\cdot 5 } +\dfrac { 7-6 }{ 5\cdot 6\cdot 7 } +\dfrac { 9-8 }{ 7\cdot 8\cdot 9 } +\frac { 11-10 }{ 9\cdot 10\cdot 11 } +\cdots \\ S = \dfrac{1}{2\cdot 3} + \dfrac{1}{3\cdot 4} + \dfrac{1}{5\cdot 6} + \cdots - \left(\dfrac{1}{3\cdot 5} +\dfrac{1}{5\cdot 7} + \dfrac{1}{7\cdot 9} + \cdots\right) \\ S = \dfrac{1}{2} -{\color{#E81990}\dfrac{1}{3}} + \dfrac{1}{3} -\dfrac{1}{4} + \cdots - \dfrac{1}{2}\left(\dfrac{1}{3} -{\color{#3D99F6}\dfrac{1}{5}}+ {\color{#3D99F6}\dfrac{1}{5}} -{\color{#D61F06}\dfrac{1}{7}} + {\color{#D61F06}\dfrac{1}{7}} + \cdots\right) \\ S =1 -1 + \dfrac{1}{2} + \dfrac{1}{3} -\dfrac{1}{4} + \cdots -{\color{#E81990}\dfrac{1}{3}}- \dfrac{1}{2}\times\dfrac{1}{3} \\ S = \ln2 - \dfrac{1}{3}\left(1+\frac{1}{2}\right) = \ln2 - \dfrac{1}{2} \end{aligned}

Hence, ln A 1 A = ln 2 1 2 A = 2 \ln A-\dfrac{1}{A} = \ln2 -\dfrac{1}{2} \implies A = 2 .

How did u get ln 2????

erica phillips - 3 years, 1 month ago

Log in to reply

Taylor's formula

laoren55 陈情 - 3 years, 1 month ago
Patrick Corn
Apr 12, 2018

Use the identity 1 ( 2 n 1 ) 2 n ( 2 n + 1 ) = 1 / 2 2 n 1 1 2 n + 1 / 2 2 n + 1 \frac1{(2n-1)2n(2n+1)} = \frac{1/2}{2n-1} - \frac1{2n} + \frac{1/2}{2n+1} to rewrite as n = 1 1 ( 2 n 1 ) 2 n ( 2 n + 1 ) = ( 1 / 2 1 1 2 + 1 / 2 3 ) + ( 1 / 2 3 1 4 + 1 / 2 5 ) + ( 1 / 2 5 1 6 + 1 / 2 7 ) + = 1 / 2 1 1 2 + 1 3 1 4 + 1 5 = 1 2 + ( 1 1 2 + 1 3 1 4 + 1 5 ) = 1 2 + ln 2. \begin{aligned} \sum_{n=1}^\infty \frac1{(2n-1)2n(2n+1)} &= \left( \frac{1/2}1 - \frac12 + \frac{1/2}3 \right) + \left( \frac{1/2}3 - \frac14 + \frac{1/2}5 \right) + \left( \frac{1/2}5 - \frac16 + \frac{1/2}7 \right) + \cdots \\ &= \frac{1/2}1 - \frac12 + \frac13 - \frac14 + \frac15 - \cdots \\ &= -\frac12 + \left( 1 - \frac12 + \frac13 - \frac14 + \frac15 - \cdots \right) \\ &= -\frac12 + \ln 2. \end{aligned} So the answer is 2 . \fbox{2}.

Would you mind deriving the identity for the full solution?

Isaac Van Baren - 3 years, 1 month ago
Chew-Seong Cheong
Apr 12, 2018

S = 1 1 2 3 + 1 3 4 5 + 1 5 6 7 + By partial fraction decomposition = 1 2 ( 1 1 2 2 + 1 3 + 1 3 2 4 + 1 5 + 1 5 2 6 + 1 7 + ) = 1 2 ( 1 1 + 1 1 2 2 + 2 3 2 4 + 2 5 2 6 + 2 7 ) 1 2 = ( 1 1 1 2 + 1 3 1 4 + 1 5 1 6 + 1 7 ) 1 2 = ln 2 1 2 \begin{aligned} S & = {\color{#3D99F6}\frac 1{1\cdot 2 \cdot 3}} + {\color{#D61F06}\frac 1{3\cdot 4 \cdot 5}} + {\color{#3D99F6}\frac 1{5\cdot 6 \cdot 7}} + \cdots & \small \color{#3D99F6} \text{By partial fraction decomposition} \\ & = \frac 12 \left({\color{#3D99F6}\frac 11 - \frac 22 + \frac 13} + {\color{#D61F06}\frac 13 - \frac 24 + \frac 15} + {\color{#3D99F6}\frac 15 - \frac 26 + \frac 17} + \cdots \right) \\ & = \frac 12 \left({\color{#D61F06} \frac 11} + \frac 11 - \frac 22 + \frac 23 - \frac 24 + \frac 25 - \frac 26 + \frac 27 - \cdots \right) \color{#D61F06} - \frac 12 \\ & = \left(\frac 11 - \frac 12 + \frac 13 - \frac 14 + \frac 15 - \frac 16 + \frac 17 - \cdots \right) - \frac 12 \\ & = \ln 2 - \frac 12 \end{aligned}

Therefore, A = 2 A = \boxed{2} .

How can we show that this infinite sum equals ln 2 1 2 \ln 2 -\dfrac 12 ?

Vilakshan Gupta - 3 years, 2 months ago

Log in to reply

Nope, the solution isnot complete yet ! I think its mistakenly been posted.

Naren Bhandari - 3 years, 2 months ago

Sorry, I thought I have deleted it.

Chew-Seong Cheong - 3 years, 2 months ago

1/(1 2 3) + 1/(3 4 5) + 1/(5 6 7) + 1/(7 8 9) = 0.19007936507

ln(2)-1/2 = 0.19314718056

ln(3)-1/3 = 0.76527895533

At this point we can start guessing from 2, but we can just approximate the remaining terms by rounding down to a 10 power, 100 (1/10^3)+1000 1/(100^3)+10000*(1/1000^3)<0.2 so it will not reach ln(3)-1/3

I think showing the form of the solution is a big help, you should ask for the value.

Levente Bodnár - 3 years, 1 month ago

Can someone explain to me why this doesn't work? LaTeX: n = 0 α = ln A ln [ e 1 / A ] n = 0 α = ln [ A e 1 / A ] e n = 0 α = A e 1 / A \begin{aligned} \sum_{n=0}^{\infty}\alpha &= \ln A - \ln\left[e^{1/A}\right] \\ \sum_{n=0}^{\infty}\alpha &= \ln\left[Ae^{-1/A}\right] \\ e^{\sum_{n=0}^{\infty}\alpha} &= Ae^{-1/A} \\ \end{aligned} Therefore comparing the coefficients, A = 1

Terence Fisher - 3 years, 1 month ago

where did the extra 1 come from in line 3?

A Former Brilliant Member - 3 years, 1 month ago

Log in to reply

Why is there an extra 1 2 \color{#D61F06}-\dfrac 12 at the end?

Chew-Seong Cheong - 3 years, 1 month ago
Jacob Dreiling
Apr 24, 2018

Looking at the first term I noticed that S S is slightly more than 1 6 \frac16 . I mentally estimated that the value of ln A 1 A \ln A-\frac1A would be sufficiently more than 1 6 \frac16 if A = 3 A=3 since ln 3 1 3 > 1 1 3 = 2 3 \ln3-\frac13>1-\frac13=\frac23 . That meant I could confidently guess that the only prime left to be "a little more than 1 6 \frac16 " would have to be A = 2 A=2 .

Daniel Dizdarevic
Apr 27, 2018

Not as elegant as some other solutions, but streightforward:

S = 1 1 2 3 + 1 3 4 5 + = n = 0 1 ( 2 n + 1 ) ( 2 n + 2 ) ( 2 n + 3 ) = n = 0 [ 1 2 ( 2 n + 1 ) 1 2 n + 2 + 1 2 ( 2 n + 3 ) ] . \begin{aligned} S &= \frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{3 \cdot 4 \cdot 5} + \ldots \\ &= \sum_{n = 0}^\infty \frac{1}{(2n + 1)(2n + 2)(2n + 3)} \\ &= \sum_{n = 0}^\infty \left[ \frac{1}{2(2n + 1)} - \frac{1}{2n + 2} + \frac{1}{2(2n + 3)} \right] . \end{aligned}

The last line can be obtained by partial fraction decomposition. By an index shift the last term can be rewritten in the form of the first,

n = 0 1 2 ( 2 n + 3 ) = n = 1 1 2 ( 2 n + 1 ) 1 2 ( 2 + 1 ) = n = 0 1 2 ( 2 n + 1 ) 1 2 . \begin{aligned} \sum_{n = 0}^\infty \frac{1}{2(2n + 3)} &= \sum_{n = -1}^\infty \frac{1}{2(2n + 1)} - \frac{1}{2(-2 + 1)} = \sum_{n = 0}^\infty \frac{1}{2(2n + 1)} - \frac{1}{2} . \end{aligned}

Therefore

S = n = 0 [ 1 2 n + 1 1 1 + 1 3 + 1 2 n + 2 1 2 1 4 ] 1 2 . \begin{aligned} S &= \sum_{n = 0}^\infty \Bigg[ \underbrace{\frac{1}{2n + 1}}_{\frac{1}{1} + \frac{1}{3} + \ldots} \underbrace{- \frac{1}{2n + 2}}_{-\frac{1}{2} - \frac{1}{4} - \ldots} \Bigg] - \frac{1}{2} . \end{aligned}

The denominator of the first fraction runs over all positive odd numbers, while the denominator of the second fraction runs over all positive even numbers. Since the sign is different, we find an alternating harmonic series,

S = n = 1 ( 1 ) n + 1 n ln 2 1 2 . \begin{aligned} S &= \underbrace{\sum_{n = 1}^\infty \frac{(-1)^{n+1}}{n}}_{\ln{2}} - \frac{1}{2} . \end{aligned}

So A = 2 A = 2 .

I like you approach. Upvote. :)

Naren Bhandari - 3 years, 1 month ago
Artur Ziffmeister
Apr 28, 2018

I guessed. :D

Good for you lol

Walter Kirkland - 3 years, 1 month ago
Supratim Santra
Apr 22, 2018

Plese split the the terms into some partial fractions and then proceed

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...