A Challenge to all Level 5 Part 2

Algebra Level 4

Find the real zero of this cubic polynomial

x 3 + x 2 + 10 x 3 \large{x^3+x^2+10x-3}


The answer is 0.2892.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let's make the substitution x = y 1 3 x=\dfrac{y-1}{3} to delete the quadratic term:

( y 1 3 ) 3 + ( y 1 3 ) 2 + 10 ( y 1 3 ) 3 = 0 \left(\dfrac{y-1}{3}\right)^3+\left(\dfrac{y-1}{3}\right)^2+10\left(\dfrac{y-1}{3}\right)-3=0

Expand and multiply by 27 27 :

y 3 + 87 y 169 = 0 y^3+87y-169=0

Now, try to compare that equation with the identity ( u + v ) 3 3 u v ( u + v ) ( u 3 + v 3 ) = 0 (u+v)^3-3uv(u+v)-(u^3+v^3)=0 . An equation system will be formed:

y = u + v . . . ( 1 ) 3 u v = 87 . . . ( 2 ) u 3 + v 3 = 169 . . . ( 3 ) \quad \begin{aligned} y=u+v &\quad ...(1) \\ 3uv=-87 &\quad ...(2) \\ u^3+v^3=169 &\quad ...(3) \end{aligned} .

Divide ( 2 ) (2) by 3 3 and cube both sides:

u 3 v 3 = 24389 u^3v^3=-24389

Now, let's make an equation in z z with roots u 3 u^3 and v 3 v^3 :

( z u 3 ) ( z v 3 ) = 0 z 2 ( u 3 + v 3 ) z + u 3 v 3 = 0 z 2 169 z 24389 = 0 (z-u^3)(z-v^3)=0 \Longrightarrow z^2-(u^3+v^3)z+u^3v^3=0 \Longrightarrow z^2-169z-24389=0

Using the quadratic formula, the solutions for z z are:

z = 169 ± 27 173 2 z=\dfrac{169 \pm 27\sqrt{173}}{2}

Hence, the real values of u u and v v are:

u = 169 + 27 173 2 3 u=\sqrt[3]{\dfrac{169+27\sqrt{173}}{2}} , v = 169 27 173 2 3 v=\sqrt[3]{\dfrac{169-27\sqrt{173}}{2}}

There also two pairs of ( u , v ) (u,v) , they are ( u w , v w 2 ) (uw,vw^2) and ( u w 2 , v w ) (uw^2,vw) where w w is any primitive 3rd root of unity. But since we are asked for the real root, we only take these values.

Finally let's undo the substitutions:

y = u + v = 169 + 27 173 2 3 + 169 27 173 2 3 y=u+v=\sqrt[3]{\dfrac{169+27\sqrt{173}}{2}}+\sqrt[3]{\dfrac{169-27\sqrt{173}}{2}}

x = y 1 3 = 169 + 27 173 2 3 + 169 27 173 2 3 1 3 x=\dfrac{y-1}{3}=\dfrac{\sqrt[3]{\dfrac{169+27\sqrt{173}}{2}}+\sqrt[3]{\dfrac{169-27\sqrt{173}}{2}}-1}{3}

x 0.2892 x \approx \boxed{0.2892}

Perrfect solution

Mehul Chaturvedi - 6 years, 5 months ago
Incredible Mind
Dec 23, 2014

are u practicing cubics day and night

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...