Use your brains

Calculus Level 4

Find the largest real root of

1000 x 3 1254 x 2 496 x + 191 \large{1000x^3-1254x^2-496x+191}

Details and Assumptions

  • Answer till 4 decimal places


The answer is 1.4997.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ronald Overwater
Dec 22, 2014

I used Newton-Raphson.

First I tried to find the regions where the function changes sign and thus has a root.

f ( 1 ) = 1000 1254 + 496 + 191 < 0 f(-1)=-1000-1254+496+191 < 0

f ( 0 ) = 191 > 0 f(0)= 191 > 0

f ( 1 ) = 1000 1254 496 + 191 < 0 f(1)=1000-1254-496+191 < 0

f ( 2 ) = 8000 5016 992 + 191 > 0 f(2)=8000-5016-992+191 > 0

so we have one root in the region [ 1 , 0 ] [-1,0] , one root in the region [ 0 , 1 ] [0,1] and the last one in region [ 1 , 2 ] [1,2] . We want this last root.

Newton-Rhapson says that the next approximation for the root is x n + 1 x_{n+1} according to the formula:

x n + 1 = x n f ( x n ) f ( x n ) = x n 1000 x n 3 1254 x n 2 496 x n + 191 3000 x n 2 2508 x n 496 x_{n+1} = x_n -\dfrac{f(x_n)}{f'(x_n)} =x_n- \dfrac{1000 x_n^3-1254x_n^2-496x_n+191}{3000x_n^2-2508x_n-496}

Starting with x 1 = 1.5 x_1 = 1.5 , the middle of the interval [ 1 , 2 ] [1,2] , we get the following very fast converging series:

x 1 = 1.5 x_1 = 1.5

x 2 = 1.5 f ( 1.5 ) f ( 1.5 ) = 1.5 0.5 2492 1.499799 x_2= 1.5 - \dfrac{f(1.5)}{f'(1.5)} = 1.5 - \dfrac{0.5}{2492} \approx 1.499799

x 3 = 1.499799 f ( 1.499799 ) f ( 1.499799 ) = 1.499799 0.0001306669 2490.69755 1.499799 x_3 = 1.499799 - \dfrac{f(1.499799)}{f'(1.499799)} = 1.499799 - \dfrac{0.0001306669}{2490.69755} \approx 1.499799

So the solution is rounded to 4 decimals: 1.4998 \boxed{1.4998} .

@mehul is most of all your problem set are you smarter than me? newtons raphoson seems the key to solving the problems

Mardokay Mosazghi - 6 years, 4 months ago

Let's make the substitution x = y + 1254 3000 x=\dfrac{y+1254}{3000} to delete the quadratic term:

1000 ( y + 1254 3000 ) 3 1254 ( y + 1254 3000 ) 2 496 ( y + 1254 3000 ) + 191 = 0 1000\left(\dfrac{y+1254}{3000}\right)^3-1254\left(\dfrac{y+1254}{3000}\right)^2-496\left(\dfrac{y+1254}{3000}\right)+191=0

Expand, clear denominators and simplify:

y 3 9181548 y 4384726128 = 0 y^3-9181548y-4384726128=0

Now, try to match that equation with the identity ( u + v ) 3 3 u v ( u + v ) ( u 3 + v 3 ) = 0 (u+v)^3-3uv(u+v)-(u^3+v^3)=0 , an equation system will be formed:

y = u + v . . . ( 1 ) 3 u v = 9181548 . . . ( 2 ) u 3 + v 3 = 4384726128 . . . ( 3 ) \quad \begin{aligned} y=u+v &\quad ...(1) \\ 3uv=9181548 &\quad ...(2) \\ u^3+v^3=4384726128 &\quad ...(3) \end{aligned}

Divide ( 2 ) (2) by 3 3 and cube both sides:

u 3 v 3 = 28667113297167468096 u^3v^3=28667113297167468096

Now, make an equation in z z with roots u 3 u^3 and v 3 v^3 :

( z u 3 ) ( z v 3 ) = 0 z 2 ( u 3 + v 3 ) z + u 3 v 3 = 0 (z-u^3)(z-v^3)=0 \Longrightarrow z^2-(u^3+v^3)z+u^3v^3=0

z 2 4384726128 z + 28667113297167468096 = 0 z^2-4384726128z+28667113297167468096=0

Using the quadratic formula we get two values of z z :

z = 2192363064 ± 6000 i 662796041466 z=2192363064 \pm 6000i\sqrt{662796041466}

Hence:

u = 2192363064 + 6000 i 662796041466 3 u=\sqrt[3]{2192363064+6000i\sqrt{662796041466}}

v = 2192363064 6000 i 662796041466 3 v=\sqrt[3]{2192363064-6000i\sqrt{662796041466}}

Using complex numbers let's take the principal cube roots for u u and v v :

u = u 3 c i s ( arg u 3 ) 1622.698958 + 653.730901 i u=\sqrt[3]{|u|} cis \left(\dfrac{\arg u}{3}\right) \approx 1622.698958+653.730901i

v = v 3 c i s ( arg v 3 ) 1622.698958 653.730901 i v=\sqrt[3]{|v|} cis \left(\dfrac{\arg v}{3}\right) \approx 1622.698958-653.730901i

From the equation system, there are three possible values for ( u , v ) (u,v) . They are: ( u , v ) (u,v) , ( u w , v w 2 ) (uw,vw^2) and ( u w 2 , v w ) (uw^2,vw) , where w w is any primitive 3rd root of unity. Can you check the other values that don't work?

So, we have three solutions for y y :

y 1 = u + v 3245.397916 y_1=u+v \approx 3245.397916

y 2 = u w + v w 2 2754.994093 y_2=uw+vw^2 \approx -2754.994093

y 3 = u w 2 + v w 490.4038231 y_3=uw^2+vw \approx -490.4038231

Hence:

x 1 = y 1 + 1254 3000 1.4997 x_1=\dfrac{y_1+1254}{3000} \approx 1.4997

x 2 = y 2 + 1254 3000 0.5003 x_2=\dfrac{y_2+1254}{3000} \approx -0.5003

x 3 = y 3 + 1254 3000 0.2545 x_3=\dfrac{y_3+1254}{3000} \approx 0.2545

From these solutions, the largest is 1.4997 \boxed{1.4997} .

How u get the the w and also the root (uw, vw^2) and (uw^2, vw)!?

AccelNano Lim Loong - 6 years, 5 months ago

The best solution

Mehul Chaturvedi - 6 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...