A challenging problem indeed!

Geometry Level 3

If x = a cos 2 θ + b sin 2 θ x = a\cos^2 \theta + b\sin^2 \theta , then find the value of ( x a ) ( b x ) ( a b ) 2 sin 2 θ cos 2 θ (x-a)(b-x)-(a-b)^2\sin^2 \theta\cos^2 \theta


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mohamad Zare
Mar 9, 2016

It is so easy. By numbers,forexample: the angle=45^,a=2,b=4 So x=3 . (3-2) (4-3) - (2-4)(2-4) × 0.5 × 0.5 = 0 Or any angle, any a ,any b !

Thanks Mohamed. The question was originally to prove that ( x a ) ( x b ) = ( a b ) 2 sin 2 θ cos 2 θ (x - a)(x - b) = (a - b)^2 \sin ^2 \theta \cos ^2 \theta

Ashrit Ramadurgam - 5 years, 3 months ago

( x a ) ( b x ) ( a b ) 2 sin 2 θ cos 2 θ (x-a)(b-x) - (a-b)^2 \sin^2 \theta \cos^2 \theta = ( a cos 2 θ + b sin 2 θ a ) ( b a cos 2 θ b sin 2 θ ) ( a b ) 2 sin 2 θ cos 2 θ =(a \cos^2 \theta + b \sin^2 \theta -a)(b - a \cos^2 \theta - b \sin^2 \theta) - (a-b)^2 \sin^2 \theta \cos^2 \theta = [ a ( cos 2 θ 1 ) + b sin 2 θ ] [ b ( 1 sin 2 θ ) a cos 2 θ ] ( a b ) 2 sin 2 θ cos 2 θ = \Big[ a(\cos^2 \theta -1) + b \sin^2 \theta \Big] \Big[ b(1-\sin^2 \theta) - a \cos^2 \theta \Big] - (a-b)^2 \sin^2 \theta \cos^2 \theta = [ a ( 1 cos 2 θ ) + b sin 2 θ ] [ b ( cos 2 θ ) a cos 2 θ ] ( a b ) 2 sin 2 θ cos 2 θ =\Big[ -a(1 - \cos^2 \theta) + b \sin^2 \theta \Big] \Big[ b(\cos^2 \theta) - a \cos^2 \theta \Big] - (a-b)^2 \sin^2 \theta \cos^2 \theta = ( a sin 2 θ + b s i n 2 θ ) ( b cos 2 θ a cos 2 θ ) ( a b ) 2 sin 2 θ cos 2 θ =(-a \sin^2 \theta + b sin^2 \theta)(b \cos^2 \theta - a \cos^2 \theta) - (a-b)^2 \sin^2 \theta \cos^2 \theta = ( b sin 2 θ a sin 2 θ ) ( b cos 2 θ a cos 2 θ ) ( a b ) 2 sin 2 θ cos 2 θ =(b \sin^2 \theta - a \sin^2 \theta)(b \cos^2 \theta - a \cos^2 \theta) - (a-b)^2 \sin^2 \theta \cos^2 \theta = sin 2 θ ( b a ) cos 2 θ ( b a ) ( a b ) 2 sin 2 θ cos 2 θ =\sin^2 \theta (b-a) \cos^2 \theta (b-a) - (a-b)^2 \sin^2 \theta \cos^2 \theta = ( a b ) 2 sin 2 θ cos 2 θ ( a b ) 2 sin 2 θ cos 2 θ =(a-b)^2 \sin^2 \theta \cos^2 \theta - (a-b)^2 \sin^2 \theta \cos^2 \theta = 0 =0

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...