A child's play!

Calculus Level 3

Find the value of the following integral:

0 1 ( 2 3 x ) 1 + 3 x d x \int _{0}^{1}\dfrac{\left(2-3x\right)}{\sqrt{1+3x}} \, dx

For more problems on mathematics, click here.

3 9 \frac{3}{9} 13 8 \frac{13}{8} 4 9 \frac{4}{9} 4 7 \frac{4}{7} 13 9 \frac{13}{9}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let the integral be I = 0 1 2 3 x 1 + 3 x d x = 0 1 3 ( 1 + 3 x ) 1 + 3 x d x = 3 0 1 1 x + 1 3 d x 3 0 1 x + 1 3 d x = 2 3 [ x + 1 3 ] 0 1 2 3 [ ( x + 1 3 ) 3 2 ] 0 1 = 2 14 9 = 4 9 \displaystyle I=\int_{0}^{1} \frac{2-3x}{\sqrt{1+3x}} dx = \int_{0}^{1} \frac{3-(1+3x)}{\sqrt{1+3x}}dx = \sqrt{3}\int_{0}^{1}\frac{1}{\sqrt{x+\frac{1}{3}}} dx - \sqrt{3}\int_{0}^{1} \sqrt{x+\frac{1}{3}}dx = 2\sqrt{3}[\sqrt{x+\frac{1}{3}}]_{0}^{1} - \frac{2}{\sqrt{3}}[(x+\frac{1}{3})^{\frac{3}{2}}]_{0}^{1} =2-\frac{14}{9} =\boxed{\frac{4}{9}}

Tapas Mazumdar
Sep 18, 2016

Let,

I = 0 1 2 3 x 1 + 3 x d x = 0 1 3 ( 1 + 3 x ) 1 + 3 x d x = 0 1 3 1 + 3 x d x 0 1 1 + 3 x d x \begin{aligned} I & = \displaystyle \int_{0}^{1}{\dfrac{2-3x}{\sqrt{1+3x}}} \,dx \\ \\ & = \displaystyle \int_{0}^{1}{\dfrac{3-(1+3x)}{\sqrt{1+3x}}} \,dx \\ \\ & = \displaystyle \int_{0}^{1}{\dfrac{3}{\sqrt{1+3x}}} \,dx - \displaystyle \int_{0}^{1}{\sqrt{1+3x}} \,dx \end{aligned}

Now, let

1 + 3 x = u 3 d x = d u 1+3x = u \implies 3\,dx = du

Upon manipulating I I to:

I = 0 1 3 1 + 3 x d x 1 3 0 1 3 1 + 3 x d x I = \displaystyle \int_{0}^{1}{\dfrac{3}{\sqrt{1+3x}}} \,dx - \dfrac{1}{3} \displaystyle \int_{0}^{1}{3\sqrt{1+3x}} \,dx

And substituting 3 d x 3\,dx with d u du , we get,

I = 1 u d u 1 3 u d u I = \displaystyle \int{\dfrac{1}{\sqrt{u}}} \,du - \dfrac{1}{3} \displaystyle \int{\sqrt{u}} \,du

Now,

1 + 3 x = u x = u 1 3 1+3x=u \iff x=\dfrac{u-1}{3}

The original limits of the problem were x = 0 x=0 to x = 1 x=1 .

Upon substitution, our new limits become u = 1 u=1 to u = 4 u=4 .

Hence,

I = 1 4 1 u d u 1 3 1 4 u d u = ( 2 u 1 3 2 3 u 3 / 2 ) 1 4 = ( 2 u 2 9 u 3 / 2 ) 1 4 = [ 2 4 2 9 ( 4 3 / 2 ) ] [ 2 1 2 9 ( 1 3 / 2 ) ] = ( 4 16 9 ) ( 2 2 9 ) = 2 14 9 = 4 9 \begin{aligned} I & = \displaystyle \int_{1}^{4}{\dfrac{1}{\sqrt{u}}} \,du - \dfrac{1}{3} \displaystyle \int_{1}^{4}{\sqrt{u}} \,du \\ \\ & = {\left(2\sqrt{u} - \dfrac{1}{3}\cdot\dfrac{2}{3}u^{{3}/{2}}\right) \huge |}_{1}^{4} \\ \\ & = {\left(2\sqrt{u} - \dfrac{2}{9}u^{{3}/{2}}\right) \huge |}_{1}^{4} \\ \\ & = \left[ 2\sqrt{4} - \dfrac{2}{9}(4^{{3}/{2}})\right] - \left[ 2\sqrt{1} - \dfrac{2}{9}(1^{{3}/{2}})\right] \\ \\ & = \left(4-\dfrac{16}{9}\right) - \left(2-\dfrac{2}{9}\right) \\ \\ & = 2-\dfrac{14}{9} \\ \\ & = \boxed{\dfrac{4}{9}} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...