A child's play

Algebra Level 4

x 80 + 2 x 64 + 2 x 56 + x 48 + 4 x 40 + x 32 + 2 x 24 + 2 x 16 + 1 x 40 \dfrac{x^{80}+2x^{64}+2x^{56}+x^{48}+4x^{40}+x^{32}+2x^{24}+2x^{16}+1}{x^{40}}

Given that x + 1 x = 3 x+\dfrac{1}{x}=\sqrt{3} , find the value of the expression above.


This problem is original.


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Reineir Duran
Feb 9, 2016

Without using the hint, simplifying the given expression, we get x 40 + 2 x 24 + 2 x 16 + x 8 + 4 + 1 x 8 + 2 x 16 + 2 x 24 + 1 x 40 . \displaystyle x^{40} + 2x^{24} + 2x^{16} + x^8 + 4 + \frac{1}{x^8} + \frac{2}{x^{16}} + \frac{2}{x^{24}} + \frac{1}{x^{40}.} Now, let [ n n ] denote x n + 1 x n x^n + \frac{1}{x^n} . We know that [ 2 k ] = [ 2 k 1 ] 2 [ 2 ] \displaystyle [2^k] = [2^{k - 1}]^2 - [2] when k k is a positive integer and k 1 k \ge 1 . Thus, since [ 1 ] = 3 [1] = \sqrt{3} , then we have the following values: [ 2 ] = 1 , [ 4 ] = 1 , [ 8 ] = 1 , [ 16 ] = 1 , [ 32 ] = 1. \displaystyle [2] = 1, [4] = -1, [8] = -1, [16] = -1, [32] = -1. We are left with [ 40 40 ] and [ 24 24 ], but [ 8 ] × [ 16 ] = [ 24 ] + [ 8 ] = 1 [ 24 ] = 2. [8] \times [16] = [24] + [8] = 1 \longrightarrow [24] = 2. Moreover, we get [ 32 ] × [ 8 ] = [ 40 ] + [ 24 ] = 1 [ 40 ) ] = 1. [32] \times [8] = [40] + [24] = 1 \longrightarrow [40)] = -1. Indeed, plugging all the values above to the original expression, we finally have 1 + 2 ( 2 ) + 2 ( 1 ) 1 + 4 = 4 . -1 + 2(2) + 2( -1) -1 + 4 = \boxed{4}.

Chris Callahan
Feb 9, 2016

( x 40 + x 24 + x 16 + 1 ) 2 ( x 20 ) 2 = ( x 40 x 20 + x 24 x 20 + x 16 x 20 + 1 x 20 ) 2 = ( x 20 + 1 x 20 + x 4 + 1 x 4 ) 2 x + 1 x = 3 ( x + 1 x ) 2 = 3 x 2 + 2 + 1 x 2 = 3 x 2 + 1 x 2 = 1 ( x 2 + 1 x 2 ) 2 = 1 x 4 + 2 + 1 x 4 = 1 x 4 + 1 x 4 = 1 ( x 4 + 1 x 4 ) 2 = 1 x 8 + 2 + 1 x 8 = 1 x 8 + 1 x 8 = 1 ( x 8 + 1 x 8 ) ( x 4 + 1 x 4 ) = 1 x 12 + x 4 + 1 x 4 + 1 x 12 = 1 x 12 + 1 x 12 = 2 ( x 12 + 1 x 12 ) ( x 8 + 1 x 8 ) = 2 x 20 + x 4 + 1 x 4 + 1 x 20 = 2 x 20 + 1 x 20 = 1 ( x 20 + 1 x 20 + x 4 + 1 x 4 ) 2 = ( 1 1 ) 2 = 4 \frac { (x^{ 40 }+x^{ 24 }+x^{ 16 }+1)^{ 2 } }{ (x^{ 20 })^{ 2 } } =(\frac { x^{ 40 } }{ x^{ 20 } } +\frac { x^{ 24 } }{ x^{ 20 } } +\frac { x^{ 16 } }{ x^{ 20 } } +\frac { 1 }{ x^{ 20 } } )^{ 2 }=({ x }^{ 20 }+\frac { 1 }{ x^{ 20 } } +x^{ 4 }+\frac { 1 }{ x^{ 4 } } )^{ 2 }\\ x+\frac { 1 }{ x } =\sqrt { 3 } \rightarrow (x+\frac { 1 }{ x } )^{ 2 }=3\rightarrow { x }^{ 2 }+2+\frac { 1 }{ x^{ 2 } } =3\rightarrow x^{ 2 }+\frac { 1 }{ { x }^{ 2 } } =1\\ (x^{ 2 }+\frac { 1 }{ x^{ 2 } } )^{ 2 }=1\rightarrow { x }^{ 4 }+2+\frac { 1 }{ x^{ 4 } } =1\rightarrow \boxed { { x }^{ 4 }+\frac { 1 }{ x^{ 4 } } =-1 } \\ (x^{ 4 }+\frac { 1 }{ x^{ 4 } } )^{ 2 }=1\rightarrow { x }^{ 8 }+2+\frac { 1 }{ { x }^{ 8 } } =1\rightarrow { x }^{ 8 }+\frac { 1 }{ x^{ 8 } } =-1\\ (x^{ 8 }+\frac { 1 }{ x^{ 8 } } )({ x }^{ 4 }+\frac { 1 }{ x^{ 4 } } )=1\rightarrow x^{ 12 }+x^{ 4 }+\frac { 1 }{ x^{ 4 } } +\frac { 1 }{ x^{ 12 } } =1\rightarrow x^{ 12 }+\frac { 1 }{ x^{ 12 } } =2\\ (x^{ 12 }+\frac { 1 }{ x^{ 12 } } )(x^{ 8 }+\frac { 1 }{ x^{ 8 } } )=-2\rightarrow x^{ 20 }+x^{ 4 }+\frac { 1 }{ x^{ 4 } } +\frac { 1 }{ x^{ 20 } } =-2\rightarrow \boxed { { x }^{ 20 }+\frac { 1 }{ x^{ 20 } } =-1 } \\ ({ x }^{ 20 }+\frac { 1 }{ x^{ 20 } } +x^{ 4 }+\frac { 1 }{ x^{ 4 } } )^{ 2 }=(-1-1)^{ 2 }=\boxed { 4 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...