A Chord Frenzy

Assume the polygon above is inscribed in a circle of radius r r .

A regular n n -gon is inscribed in a circle with radius r r .

Let A 0 , A 1 , A 2 , . . . , A n 1 A_{0},A_{1},A_{2},...,A_{n - 1} be the vertices of the n n -gon inscribed in the circle. Draw chords A 0 A 1 , A 0 A 2 , A 0 A 3 , . . . , A 0 A k A_{0}A_{1}, A_{0}A_{2}, A_{0}A_{3}, ...,A_{0}A_{k} , where k < n k < n .

Write an computer algorithm to compute P = ( j = 1 k A 0 A j ) 2 P = (\prod_{j = 1}^{k} A_{0} A_{j})^2 , then letting r = 2 r = 2 , n = 23 n = 23 , and k = 11 k = 11 , find P = ( j = 1 11 A 0 A j ) 2 P = (\prod_{j = 1}^{11} A_{0} A_{j})^2 .


The answer is 96468992.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Jan 1, 2018

For General Case:

Let u 0 = 2 r sin ( π n ) u_{0} = 2r \sin(\dfrac{\pi}{n}) and for ( 1 j k 1 ) (1 \leq j \leq k - 1) let u j = u 0 2 + u j 1 2 2 a 0 a j 1 cos ( ( n 2 ) π n ( j 1 ) π n ) u_{j} = \sqrt{u_{0}^2 + u_{j - 1}^2 - 2 a_{0} a_{j - 1}\cos(\dfrac{(n - 2)\pi}{n} - (j - 1)\dfrac{\pi}{n})}

and P = ( j = 0 k 1 u j ) 2 . P = (\prod_{j = 0}^{k - 1} u_{j})^2.

Program(written in Free Pascal):

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
program                 forbrillant;

uses mathunit;

var r:real;
    n,k:longint;


{General case:}

procedure        getinput;


begin

writeln('Enter the radius of the circle');

readln(r);

writeln('Enter number of sides of n-gon');

read(n);

writeln('Enter k');

readln(k);

end;

function               prod(k:longint):real;

type arraytype = array[0 .. 1000] of real;

var j:longint;

    u:arraytype;

    s:real;

begin

u[0]:= 2* r * sin(pi/n);

for j:= 1 to k - 1 do

begin

u[j]:= sqrt(power(u[0],2) + power(u[j - 1],2) - 2 * u[0] * u[j - 1] *

cos((n - 2) * pi/n - (j - 1) * pi/n));

end;

s:= 1;

for j:= 0 to k - 1 do

begin

s:= s * u[j];

end;

prod:= power(s,2);

end;



begin

getinput;

writeln(prod(k):0:4);

readln;

end. 

Using the program and r = 2 r = 2 , n = 23 n = 23 , and k = 11 k = 11 we obtain P = ( j = 0 10 u j ) 2 = 96468992 P = (\prod_{j = 0}^{10} u_{j})^2 = \boxed{96468992} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...