In the figure, C A = 2 , C B = 3 , ∠ C A P = ∠ P B C = 9 0 º and ∠ A P B = 6 0 º . How long is P C ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
nice solution sir.
In this special case, you could've used the definition of trigonometric ratios (which you have, implicitly).
A
B
=
x
⇒
x
2
=
A
C
2
+
C
B
2
−
2
⋅
A
B
⋅
B
C
⋅
cos
(
1
2
0
º
)
=
4
+
9
+
6
=
1
9
A
P
=
y
,
P
B
=
z
⇒
z
2
+
y
2
−
2
y
z
cos
(
6
0
º
)
=
x
2
⇒
z
2
+
y
2
−
y
z
=
1
9
P
C
2
=
z
2
+
3
2
=
y
2
+
2
2
⇒
y
2
=
5
+
z
2
⇒
z
2
+
y
2
−
y
z
=
z
2
+
(
5
+
z
2
)
−
z
(
5
+
z
2
)
=
1
9
⇒
z
=
3
7
⇒
P
C
=
z
2
+
3
2
=
3
4
9
+
9
=
3
2
5
7
≈
5
.
0
3
3
Problem Loading...
Note Loading...
Set Loading...
Let P C = x and ∠ A P C = θ . Then, by sine rule:
⎩ ⎪ ⎨ ⎪ ⎧ sin 9 0 ∘ x = sin θ 2 sin 9 0 ∘ x = sin ( 6 0 ∘ − θ ) 3 ⇒ x = sin θ 2 ⇒ x = sin ( 6 0 ∘ − θ ) 3 . . . ( 1 ) . . . ( 2 )
sin ( 6 0 ∘ − θ ) 3 3 sin θ 3 sin θ 3 sin θ 4 sin θ ⇒ tan θ ⇒ sin θ ( 1 ) : x = sin θ 2 = 2 sin ( 6 0 ∘ − θ ) = 2 ( 2 3 cos θ − 2 1 sin θ ) = 3 cos θ − sin θ = 3 cos θ = 4 3 = 1 9 3 = sin θ 2 = 2 3 1 9 ≈ 5 . 0 3 3