A Cyclic Quadrilateral

Geometry Level 4

In the figure, C A = 2 CA = 2 , C B = 3 CB = 3 , C A P = P B C = 90 º \angle{CAP} = \angle{PBC} = 90º and A P B = 60 º \angle{APB}=60º . How long is P C PC ?


The answer is 5.033.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Feb 28, 2016

Let P C = x PC = x and A P C = θ \angle APC = \theta . Then, by sine rule:

{ x sin 9 0 = 2 sin θ x = 2 sin θ . . . ( 1 ) x sin 9 0 = 3 sin ( 6 0 θ ) x = 3 sin ( 6 0 θ ) . . . ( 2 ) \begin{cases} \dfrac{x}{\sin 90^\circ} = \dfrac{2}{\sin \theta} & \Rightarrow x = \dfrac{2}{\sin \theta} & ...(1) \\ \dfrac{x}{\sin 90^\circ} = \dfrac{3}{\sin (60^\circ-\theta)} & \Rightarrow x = \dfrac{3}{\sin (60^\circ-\theta)} & ...(2) \end{cases}

3 sin ( 6 0 θ ) = 2 sin θ 3 sin θ = 2 sin ( 6 0 θ ) 3 sin θ = 2 ( 3 2 cos θ 1 2 sin θ ) 3 sin θ = 3 cos θ sin θ 4 sin θ = 3 cos θ tan θ = 3 4 sin θ = 3 19 ( 1 ) : x = 2 sin θ = 2 19 3 5.033 \begin{aligned} \frac{3}{\sin (60^\circ-\theta)} & = \frac{2}{\sin \theta} \\ 3 \sin \theta & = 2\sin (60^\circ-\theta) \\ 3 \sin \theta & = 2 \left(\frac{\sqrt{3}}{2} \cos \theta - \frac{1}{2} \sin \theta \right) \\ 3 \sin \theta & = \sqrt{3} \cos \theta - \sin \theta \\ 4 \sin \theta & = \sqrt{3}\cos \theta \\ \Rightarrow \tan \theta & = \frac{\sqrt{3}}{4} \\ \Rightarrow \sin \theta & = \sqrt{\frac{3}{19}} \\ \\ (1): \quad x & = \frac{2}{\sin \theta} = 2\sqrt{\frac{19}{3}} \approx \boxed{5.033} \end{aligned}

nice solution sir.

Satyabrata Dash - 5 years, 3 months ago

In this special case, you could've used the definition of trigonometric ratios (which you have, implicitly).

A Former Brilliant Member - 5 years, 3 months ago
Juan Fernández
May 26, 2016

A B = x x 2 = A C 2 + C B 2 2 A B B C cos ( 120 º ) = 4 + 9 + 6 = 19 AB = x \Rightarrow x^{2} = AC^{2} +CB^{2} - 2\cdot AB\cdot BC\cdot \cos (120º) = 4+9+6=19 A P = y , P B = z z 2 + y 2 2 y z cos ( 60 º ) = x 2 z 2 + y 2 y z = 19 AP = y, PB = z \Rightarrow z^{2}+y^{2}-2yz \cos (60º) =x^{2} \Rightarrow z^{2}+y^{2}-yz = 19
P C 2 = z 2 + 3 2 = y 2 + 2 2 y 2 = 5 + z 2 PC^{2} = z^{2}+3^{2} = y^{2}+2^{2} \Rightarrow y^{2}=5+z^{2} z 2 + y 2 y z = z 2 + ( 5 + z 2 ) z ( 5 + z 2 ) = 19 \Rightarrow z^{2}+y^{2}-yz = z^{2}+(5+z^{2})-z(\sqrt{5+z^{2}}) =19 z = 7 3 \Rightarrow z = \frac{7}{\sqrt{3}} P C = z 2 + 3 2 = 49 3 + 9 = 2 57 3 5.033 \Rightarrow PC = \sqrt{z^{2}+3^{2}}=\sqrt{\frac{49}{3}+9}=\frac{2\sqrt{57}}{3}\approx 5.033

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...