A Circle inscribed in two intersecting parabolas!

Level pending

Let a > 1 2 a > \dfrac{1}{\sqrt{2}} .

The circle centered at the origin ( 0 , 0 ) (0,0) is inscribed in the two curves

x 2 + 2 x y + y 2 2 x + 2 y = 2 a 2 x^2 + 2xy + y^2 - \sqrt{2}x + \sqrt{2}y = 2a^2 and x 2 + 2 x y + y 2 + 2 x 2 y = 2 a 2 x^2 + 2xy + y^2 + \sqrt{2}x - \sqrt{2}y = 2a^2 .

Let A c A_{c} be the area of the circle.

Find the value of a a for which the area of the circle A c = a ( 3 a + 1 ) 4 π A_{c} = \dfrac{a(3a + 1)}{4}\pi .


The answer is 1.6180339887498948.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Mar 20, 2021

Let a > 1 2 a > \dfrac{1}{\sqrt{2}} .

( 1 ) : x 2 + 2 x y + y 2 2 x + 2 y = 2 a 2 (1): \:\ x^2 + 2xy + y^2 - \sqrt{2}x + \sqrt{2}y = 2a^2

( 2 ) : x 2 + 2 x y + y 2 + 2 x 2 y = 2 a 2 (2): \:\ x^2 + 2xy + y^2 + \sqrt{2}x - \sqrt{2}y = 2a^2 .

The equations of rotation are:

x = x cos ( θ ) y sin ( θ ) x = x'\cos(\theta) - y'\sin(\theta) and y = x sin ( θ ) + y cos ( θ ) y = x'\sin(\theta) + y'\cos(\theta) .

Since C o e f f ( x 2 ) = C o e f f ( y 2 ) Coeff(x^2) = Coeff(y^2) in both curves θ = 4 5 \implies \theta = 45^{\circ} \implies

x = x y 2 x = \dfrac{x' - y'}{\sqrt{2}} and y = x + y 2 y = \dfrac{x' + y'}{\sqrt{2}}

( 1 ) x 2 2 x y + y 2 2 + ( x 2 y 2 ) + x 2 + 2 x y + y 2 2 ( x y ) + x + y = 2 a 2 (1) \implies \dfrac{x'^2 - 2x'y' + y'^2}{2} + (x'^2 - y'^2) + \dfrac{x'^2 + 2x'y' + y'^2}{2} - (x' - y') + x' + y' = 2a^2

x 2 + y = a 2 y = a 2 x 2 \implies x'^2 + y' = a^2 \implies \boxed{y' = a^2 - x'^2} and similarly for ( 2 ) (2) we have: y = x 2 a 2 \boxed{y' = x'^2 - a^2} .

Using y = a 2 x 2 D = d 2 = x 2 + ( a 2 x 2 ) 2 = x 4 ( 2 a 2 1 ) x 2 + a 4 y' = a^2 - x'^2 \implies D = d^2 = x'^2 + (a^2 - x'^2)^2 = x'^4 - (2a^2 -1)x'^2 + a^4 \implies

d D d x = 2 x ( 2 x 2 ( 2 a 2 1 ) ) = 0 \dfrac{dD}{dx'} = 2x'(2x'^2 - (2a^2 - 1)) = 0 and x 0 x = ± 2 a 2 1 2 y = 1 2 x' \neq 0 \implies x' = \pm\sqrt{\dfrac{2a^2 - 1}{2}} \implies y' = \dfrac{1}{2} \implies

D = d 2 = 4 a 2 1 4 D = d^2 = \dfrac{4a^2 - 1}{4}

and a > 1 2 d 2 D d x 2 > 0 a > \dfrac{1}{\sqrt{2}} \implies \dfrac{d^2D}{dx'^2} > 0 \implies the distance d d is minimized when x = ± 2 a 2 1 2 x' = \pm\sqrt{\dfrac{2a^2 - 1}{2}}

A c = 2 a 2 1 4 π = a ( 3 a + 1 ) 4 π a 2 a 1 = 0 \implies A_{c} = \dfrac{2a^2 - 1}{4}\pi = \dfrac{a(3a + 1)}{4}\pi \implies a^2 - a - 1 = 0 \implies a = 1 ± 5 2 a = \dfrac{1 \pm \sqrt{5}}{2} and dropping the negative root

a = 1 + 5 2 1.6180339887498948 \implies a = \dfrac{1 + \sqrt{5}}{2} \approx \boxed{1.6180339887498948} .

Note: I could have let a > 1 2 |a| > \dfrac{1}{\sqrt{2}} which also works, but since 1 5 2 ( , 1 2 ) ( 1 2 , ) \dfrac{1 - \sqrt{5}}{2} \notin (-\infty, -\dfrac{1}{\sqrt{2}}) \cup (\dfrac{1}{\sqrt{2}}, \infty) there was no reason to extend the interval.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...