A Circle inscribed in two intersecting parabolas

Geometry Level 4

The circle centered at the origin ( 0 , 0 ) (0,0) is inscribed in the two curves

x 2 + 2 x y + y 2 2 x + 2 y = 8 x^2 + 2xy + y^2 - \sqrt{2}x + \sqrt{2}y = 8 and x 2 + 2 x y + y 2 + 2 x 2 y = 8 x^2 + 2xy + y^2 + \sqrt{2}x - \sqrt{2}y = 8 .

If the area A c A_{c} of the circle can be expressed as A c = a b π A_{c} = \dfrac{a}{b}\pi , where a a and b b are coprime positive integers, find a + b a + b .


The answer is 19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Mar 18, 2021

( 1 ) : x 2 + 2 x y + y 2 2 x + 2 y = 8 (1): \:\ x^2 + 2xy + y^2 - \sqrt{2}x + \sqrt{2}y = 8

( 2 ) : x 2 + 2 x y + y 2 + 2 x 2 y = 8 (2): \:\ x^2 + 2xy + y^2 + \sqrt{2}x - \sqrt{2}y = 8 .

The equations of rotation are:

x = x cos ( θ ) y sin ( θ ) x = x'\cos(\theta) - y'\sin(\theta) and y = x sin ( θ ) + y cos ( θ ) y = x'\sin(\theta) + y'\cos(\theta) .

Since C o e f f ( x 2 ) = C o e f f ( y 2 ) Coeff(x^2) = Coeff(y^2) in both curves θ = 4 5 \implies \theta = 45^{\circ} \implies

x = x y 2 x = \dfrac{x' - y'}{\sqrt{2}} and y = x + y 2 y = \dfrac{x' + y'}{\sqrt{2}}

( 1 ) x 2 2 x y + y 2 2 + ( x 2 y 2 ) + x 2 + 2 x y + y 2 2 ( x y ) + x + y = 8 (1) \implies \dfrac{x'^2 - 2x'y' + y'^2}{2} + (x'^2 - y'^2) + \dfrac{x'^2 + 2x'y' + y'^2}{2} - (x' - y') + x' + y' = 8

x 2 + y = 4 y = 4 x 2 \implies x'^2 + y' = 4 \implies \boxed{y' = 4 - x'^2} and similarly for ( 2 ) (2) we have: y = x 2 4 \boxed{y' = x'^2 - 4} .

Using y = 4 x 2 D = d 2 = x 2 + ( 4 x 2 ) 2 = x 4 7 x 2 + 16 y' = 4 - x'^2 \implies D = d^2 = x'^2 + (4 - x'^2)^2 = x'^4 - 7x'^2 + 16 \implies

d D d x = 2 x ( 2 x 2 7 ) = 0 \dfrac{dD}{dx'} = 2x'(2x'^2 - 7) = 0 and x 0 x = ± 7 2 y = 1 2 x' \neq 0 \implies x' = \pm\sqrt{\dfrac{7}{2}} \implies y' = \dfrac{1}{2} \implies

D = d 2 = 15 4 D = d^2 = \dfrac{15}{4}

and d 2 D d x 2 > 0 \dfrac{d^2D}{dx'^2} > 0 \implies the distance d d is minimized when x = ± 7 2 x' = \pm\sqrt{\dfrac{7}{2}}

A c = 15 4 π = a b π a + b = 19 \implies A_{c} = \dfrac{15}{4}\pi = \dfrac{a}{b}\pi \implies a + b = \boxed{19} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...