A Classical Double Factorial Sum

Calculus Level 5

k = 0 k ! ( 2 k + 5 ) ! ! \sum _{ k=0 }^{ \infty }{ \frac { k! }{ \left( 2k+5 \right) !! } } If the value of above sum can be expressed in the form A π C B D E \frac { A{ \pi }^{ C } }{ B } -\frac { D }{ E } such that g c d ( A , B ) = g c d ( D , E ) = 1 gcd\left( A,B \right) =gcd\left( D,E \right) =1 . Then find the value of A + B + C + D + E A+B+C+D+E (This problem was inspired by Haven't seen this before )


The answer is 21.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Syed Shahabudeen
Dec 29, 2019

The following sum can be expressed in the form k = 3 k ! ( k 3 ) ! 2 k ( 2 k ) ! = k = 3 ( k ! ) 2 2 k ( 2 k ) ! ( k ) ( k 1 ) ( k 2 ) \sum _{ k=3 }^{ \infty }{ \frac { k!\left( k-3 \right) !{ 2 }^{ k } }{ \left( 2k \right) ! } } =\sum _{ k=3 }^{ \infty }{ \frac { { \left( k! \right) }^{ 2 }{ 2 }^{ k } }{ \left( 2k \right) !\left( k \right) \left( k-1 \right) \left( k-2 \right) } } . This can be again written in terms of gamma function k = 3 ( k ! ) 2 2 k ( 2 k ) ! ( k ) ( k 1 ) ( k 2 ) = k = 3 Γ ( k ) Γ ( k + 1 ) 2 k Γ ( 2 k + 1 ) ( k 1 ) ( k 2 ) \sum _{ k=3 }^{ \infty }{ \frac { { \left( k! \right) }^{ 2 }{ 2 }^{ k } }{ \left( 2k \right) !\left( k \right) \left( k-1 \right) \left( k-2 \right) } } =\sum _{ k=3 }^{ \infty }{ \frac { \Gamma \left( k \right) \Gamma \left( k+1 \right) { 2 }^{ k } }{ \Gamma \left( 2k+1 \right) \left( k-1 \right) \left( k-2 \right) } } here Γ ( k ) Γ ( k + 1 ) Γ ( 2 k + 1 ) { \frac { \Gamma \left( k \right) \Gamma \left( k+1 \right) }{ \Gamma \left( 2k+1 \right) } } can be expressed in terms of beta integral . Therefore we get k = 3 2 k ( k 1 ) ( k 2 ) 0 1 t k 1 ( 1 t ) k d t \sum _{ k=3 }^{ \infty }{ \frac { { 2 }^{ k } }{ \left( k-1 \right) \left( k-2 \right) } \int _{ 0 }^{ 1 }{ { t }^{ k-1 }{ \left( 1-t \right) }^{ k }dt } } on interchanging the sum and integral we get 0 1 1 t k = 3 ( 2 t ( 1 t ) ) k ( k 1 ) ( k 2 ) d t \int _{ 0 }^{ 1 }{ \frac { 1 }{ t } } \sum _{ k=3 }^{ \infty }{ \frac { { \left( 2t\left( 1-t \right) \right) }^{ k } }{ \left( k-1 \right) \left( k-2 \right) } } dt Here the sum of the the series can be obtained from logarthimic series 1 t k = 3 ( 2 t ( 1 t ) ) k ( k 1 ) ( k 2 ) = ( t ) ( 2 ( 1 t ) ) 2 ln ( 1 2 t ( 1 t ) ) + ( t ) ( 2 ( 1 t ) ) 2 + ( 2 ( 1 t ) ) ln ( 1 2 t ( 1 t ) ) \frac { 1 }{ t } \sum _{ k=3 }^{ \infty }{ \frac { { \left( 2t\left( 1-t \right) \right) }^{ k } }{ \left( k-1 \right) \left( k-2 \right) } } =\quad -\left( t \right) { \left( 2\left( 1-t \right) \right) }^{ 2 }\ln { \left( 1-2t\left( 1-t \right) \right) + } { \left( t \right) \left( 2\left( 1-t \right) \right) }^{ 2 }+\left( 2\left( 1-t \right) \right) \ln { \left( 1-2t\left( 1-t \right) \right) } The remaining part is to just integrate it term by term ( since it would be lengthy I wont be posting it here) 0 1 ( ( t ) ( 2 ( 1 t ) ) 2 ln ( 1 2 t ( 1 t ) ) + ( t ) ( 2 ( 1 t ) ) 2 + ( 2 ( 1 t ) ) ln ( 1 2 t ( 1 t ) ) ) d t = π 6 4 9 \int _{ 0 }^{ 1 }{ \left( -\left( t \right) { \left( 2\left( 1-t \right) \right) }^{ 2 }\ln { \left( 1-2t\left( 1-t \right) \right) + } { \left( t \right) \left( 2\left( 1-t \right) \right) }^{ 2 }+\left( 2\left( 1-t \right) \right) \ln { \left( 1-2t\left( 1-t \right) \right) } \right) } dt=\frac { \pi }{ 6 } -\frac { 4 }{ 9 } Therefore as per the question A + B + C + D + E = 21 \boxed{A+B+C+D+E=21}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...