Curly waves

Equation of two waves are
y = A sin ( w t k x ) y = A \sin(wt - kx)
y = A sin ( w t k x + 90 ) y=A \sin(wt - kx + 90) 90 denotes 90 degrees,
A is amplitude,w is angular frequency, k k is wave number;


Now the equation of the resulting wave can be represented as
y = A a 2 sin ( w t k x + b ) y = A\sqrt [ 2 ]{ a } \sin(wt - kx + b) where a a is an integer, and b b is in degrees
Find ( b 2 ) / ( a 5 ) (b*2)/(a*5) .


This is a part of my set Aniket's Mechanics Challenges


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Neelesh Vij
Mar 14, 2016

The resultant wave equation can be written as:

y = A sin ( w t k x ) + A sin ( w t k x + 9 0 ) y= A\sin{(wt -kx)} + A\sin{(wt -kx +90^{\circ})}

Using identity sin A + sin B = 2 sin ( A + B 2 ) × cos ( A B 2 ) \text{Using identity} \sin{A} + \sin{B} = 2\sin{\left(\dfrac{A+B}{2} \right)} \times \cos{\left(\dfrac{A-B}{2} \right)}

2 A sin ( ( k x w t ) + ( k x w t + 9 0 ) 2 ) × cos ( ( k x w t ) ( k x w t + 9 0 ) 2 ) \displaystyle \rightarrow 2A\sin{\left(\dfrac{(kx -wt)+ (kx -wt +90^{\circ})}{2} \right)} \times \cos{\left(\dfrac{(kx -wt)-(kx -wt +90^{\circ})}{2} \right)}

2 A sin ( w t k x + 4 5 ) × cos 4 5 \rightarrow 2A \sin{(wt-kx + 45^{\circ})} \times \cos{45^{\circ}}

A 2 × sin ( w t k x + 4 5 ) \rightarrow A\sqrt{2} \times \sin{(wt-kx +45^{\circ})}

a = 2 and b = 45 \therefore a =2 \text{and} b=45

b × 2 a × 5 = 45 × 2 2 × 5 = 9 \rightarrow \dfrac{b\times 2}{a \times5} = \dfrac{45 \times 2}{2\times 5} = \boxed{9}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...