Maximum velocity of the block!

A spring of spring constant k k connected to a block of mass m m is placed on a rough horizontal surface having coefficient of friction μ \mu . The spring is given initial elongation 3 μ m g k \frac{3 \mu mg}{k} and the block is released from rest. For the subsequent motion, the maximum speed of the block is?

μ g m k \mu g \sqrt{\frac{m}{k}} 2 μ g m k 2 \mu g \sqrt{\frac{m}{k}} μ g m 2 k \mu g \sqrt{\frac{m}{2k}} μ g 2 m k \mu g \sqrt{\frac{2m}{k}}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Nishant Rai
May 19, 2015

(Apply conservation of Energy.)

(Note that a body attains it's maximum speed when all the external forces acting on it gets balanced.)

k x = μ m g \Rightarrow kx = \mu mg where x x is the compression in the spring at the time of maximum velocity of the block.

But i am getting 2 μ g 2 m k 2\mu g \sqrt{\frac{2m}{k}}

Kyle Finch - 6 years ago

How do you make these diagrams while posting physics questions? @Nishant Rai

Samarpit Swain - 6 years ago

Log in to reply

I use Illustrator

Kishore S. Shenoy - 5 years, 9 months ago

Once the spring force is equal to the friction force, friction will absorb K.E.and so the velocity will then go on decreasing. S o V m a x will take place when spring and friction forces are equal. At this point, that is at elongation of X v m a x , k X v m a x = μ m g . And the block will stil lhave P.E. of k X v m a x 2 = ( μ m g ) 2 k . . . ( 1 ) So the P.E. lost in friction PLUS converted to K.E. = I n i t i a l P . E . P . E . l e f t a t V m a x g i v e n i n ( 1 ) = 1 2 k { ( 3 μ m g ) 2 ( μ m g ) 2 } = 4 ( μ m g ) 2 k . P.E . absorbed by friction PLUS that converted to K.E. = μ m g { 3 μ m g } k + 1 2 m V m a x 2 = 3 ( μ m g ) 2 k + 1 2 m V m a x 2 = 4 ( μ m g ) 2 k . V m a x = 2 μ g m k \text {Once the spring force is equal to the friction force, friction will absorb} \\\text {K.E.and so the velocity will then go on decreasing. }\\So ~ V_{max} ~\text {will take place when spring and friction forces are equal.}\\\text{At this point, that is at elongation of } ~X_{vmax}, ~~k*X_{vmax}=\mu*m*g. \\\text {And the block will stil lhave P.E. of } ~k*X_{vmax}^2=\dfrac{(\mu*m*g)^2}{k}...(1) \\\text {So the P.E. lost in friction PLUS converted to K.E.} \\=~Initial~ P.E. ~-~ P.E.~ left~ at ~V_{max} ~given ~ in ~(1)\\=\dfrac 1 2 *k* \{ (3\mu mg)^2 - (\mu mg)^2 \} =\color{#D61F06}{\dfrac { 4* (\mu mg)^2}{k}}.\\\text {P.E . absorbed by friction PLUS that converted to K.E.} \\=\mu mg*\dfrac{ \{3\mu mg \}}{k} + \dfrac 12 m*V_{max}^2\\ =\dfrac {\color{#D61F06}{ 3}* (\mu mg)^2}{k}+ \dfrac 12 m*V_{max}^2=\color{#D61F06}{\dfrac { 4* (\mu mg)^2}{k}} .\\V_{max} =~~~~~~\Large \color{#3D99F6}{2 \mu g \sqrt{\dfrac{m}{k}}}
This is how I would like to explain N i s h a n t R a i s \color{#BA33D6}{Nishant ~Rai's } idea.

Nishu Sharma
May 20, 2015

You can directly use fact of SHM , that
V m a x = A ω k A = 3 μ m g μ m g = 2 μ m g ω = k m V m a x = 2 μ m g k × k m = 2 μ g m k \displaystyle{{ V }_{ max }=A\omega \\ kA=3\mu mg-\mu mg=2\mu mg\\ \omega =\sqrt { \cfrac { k }{ m } } \\ { V }_{ max }=\cfrac { 2\mu mg }{ k } \times \sqrt { \cfrac { k }{ m } } =2\mu g\sqrt { \cfrac { m }{ k } } }

but the amplitude here is not constant to apply the formula as you said of shm,isnt it..

Chirag Shyamsundar - 6 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...